

Current Activities in Numerical Unsteady Aerodynamics for Flutter- and Loads Analysis of Transport Aircraft

Ralph Voß DLR Institute of Aeroelasticity, Göttingen Germany

Contents

- ✓ Overview of Unsteady Aerodynamics
- ✓ CFD Simulation of flutter, dynamic response and buffet
- ✓ Requirements of an efficient flutter analysis
- ✓ Methods for reduction of computational effort
 - Correction method
 - Transfer function method
 - ✓ Linearised CFD
 - → POD Methods
- → Conclusion

Overview: Types of Unsteady Aerodynamic Problems

Main Tool: DLR's TAU-Code

➔ 3D Finite Volume Scheme on unstructured hybrid grids (tetrahedra, prisms, pyramids, hexahedra),

- ✓ Integration of RANS- or Euler Equations
- → 1-eq. , 2-eq- and RSM-turbulence models, DES
- ✓ Central or Upwind Spatial discretisation
- ✓ Time Integration by Explicit Multi-Step Runge-Kutta Scheme.
- Time Accuracy by Dual Time Stepping with Residual Smoothing for each Physical Time Step
- ➤ Local mesh adaptation: refinement/coarsening
- ✓ Chimera technique for overlapping grids
- ✓ High performance on parallel computers
- → Efficient and robust Grid deformation tool
- ✓ Python-based fluid structure coupling

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

CFD Flutter Simulation

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 5 R,Voß, Kolloquium Zagreb 26 May 2010 > ZVG2007AE > 26.05.2010

CFD Flutter Simulation

Validation: Unsteady Control Surface Aerodynamics

Validation: Wing-Pylon-Nacelle Interferemce (WIONA)

 $\eta = 0.46$

33

 2π

 $\eta = 0.46$

TAU upper TAU lower

ETW exp. upper ETW exp. lower

TAU upper TAU lower

ETW exp. upper

ETW exp. lower

24

20

Validation HIRENASD

second mode shape, k=0.66, max. amplitude=3.9e-3 Ma=0.8, Re=7e6,

High End Nonlinear Gust Analysis with TAU

- Gust amplitude = 30 m/s,
 Wavelength = 60 m
- Ma = 0.85, h = 11 km, Re = 72 x 106
- Step 1: Trim steady horizontal flight
- Step 2: Coupling TAU with 6 flight mechanics DOFs
- Enforcement of (1 cos)gust velocities at far field and in field
- ✓ Source: R,Heinrich, DLR-AS

Linear Loads- and Gust Analysis:

→ Ma = 0,75;
$$\omega^* = 2\pi f b / u = 0,30914$$

Doublet Lattice Aerodynamics

 $\{\Delta c_p\} = [AIC] \cdot \{w_{ind}\}$ $w_{ind} = \alpha \cdot (1 + i \cdot x \cdot \omega^* / b)$

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 11 R,Voß, Kolloquium Zagreb 26 May 2010 > ZVG2007AE > 26.05.2010

Dynamic Response to Wake Windtunnel test – generic model for gust response

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Interference Problems

Atmospheric turbulence and gusts,

Wake and vortex interference

Numerical Simulations require fine grids for proper wake resolution

TAU-Simulation: Vorticity for configuration of two oscillating airfoils

Folie 13 R,Voß, Kolloquium Zagreb 26 May 2010 > ZVG2007AE > 26.05.2010

- Pure aerodynamic, self-excited shock oscillations due to shockboundary layer interaction in transonic flow
- → Large-scale, low-frequency (Sr≈0.1), beyond critical (Ma_∞, α)
- ✓ Fixed airfoil, i.e. no elasticity here
- → Heavy loads, may couple with structural dynamics ("buffeting")
- Can be simulated with CFD (qualitatively)

Physics of feedback mechanism still subject of discussion!

Deutsches Zentrum
 für Luft- und Raumfahrt e.V.
 in der Helmholtz-Gemeinschaft

Shock Buffet - direct simulation

Shock Buffet - Four subcritical mean flow fields

→ Four different stable 2-d RANS flow fields around a supercritical airfoil at Ma=0.75 and α_0 = 0°, 2°, 3°, 4° :

Shock Buffet

Subcritical frequency response

Excitation of the flow with (very!) small, harmonic perturbations in the time domain (arbitrary kinematics)

Efficiency Improvement of Flutter Analysis in transonic and separated flow

Flutter analysis of an aircraft needs computations for many parameter combinations:

- ➤ Mach numbers: 1-7, Frequencies: 5-12, Symmetric-Antidymmetric: 2, Modes: 40-150,
- → Payload/fuel weight: 15-20, trimmed (elasic) flight conddition: 1-3 → > 1 Mio !
- → CFD effort for example TAU-URANS, CFD Half model, 5.417 Mio grid cells
- → 27 h CPU per single case (32 Prozessors) = 3 Mio Proc.sec!

→ Reduktion of CFD effort necessary

- Correction of classical subsonic DLM
- Transfer Functions
- Application of less sophisticated CFD (Euler+boundary-layer)
- → Linearised CFD

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

CFD4Flutter – RANS based CFD-Correction of DLM

Complete CFD Simulation \rightarrow for selected Basic modes \rightarrow correction of DLM Aero

Approximation of Elastic Modes

 10 synthetic modes sufficient for approximation of first 50 real airctaft modes (MAC values > 80%).

Application to DLR Research Aircraft G550-HALO

- ✓ CFD half model, RANS, 5.417 Mio cells,
- Unsteady aero data base for forced oscillations of trimmed aircraft in static aeroelastic equilibrium
- **→** 300 cases (3 Ma, 2 cl, 5 ω^* , 10 synth. modes)
- Flutter computation based on unsteady aerodynamic corrected data, 95 modes from Ground Vibration Test

Deutsches Zentrum

DLR

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Correction factor (magnitude and phase) (1. Torsion, Ma=0.8, k=0.25) Folie 21 R,Voß, Kolloquium Zagreb 26 May 2010 > _{ZVG2007AE > 26.05.2010}

Transfer Functions – Impulse Method

Unsteady 1. Harmonic of lift extracted from pulse excitation of airfoil. <u>Linearity</u> of transonic and separated flow for small disturbances!

Euler – Boundary layer Coupling Testcase LANN CT9 with shock-induced flow separation

- TAU with 2D inverse Integral Boundary Layer Method
- ➤ For attached flow o.k.
- ✓ Not for separated flow

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 23 R,Voß, Kolloquium Zagreb 26 May 2010 > ZVG2007AE > 26.05.2010

Linearised CFD

Justification

- ✓ Small perturbations of boundaries → small linear perturbations of (nonlinear) mean flow field
- Mean flow may comprise shock waves and flow separation
- Motion of shock waves or separation bubbles are nearly proportional to boundary perturbation
- This apprroximation is sufficient for aerolestic stability analysis

Difficulties and limits

- LCO (large shock motion or separation motion)
- Linearisation for separated flow difficult Linearisation of turbulence models?
- Linearisation of transition?

DEUR DEUTSCHES ZENTRUM FÜR LUFt- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 24 R, Voß, Kolloquium Zagreb 26 May 2010 > ZVG2007AE > 26.05.2010

Linearised Frequency Domain Solver (LFD)

- ✓ Unsteady RANS Equation (1):
- ➤ Fourier series expansion
- \checkmark of u(t) and x(t)

n der Helmholtz-Gemeinschaft

$$\frac{du}{dt} + R(u, x, \dot{x}) = 0$$
$$u(t) = \bar{u} + \tilde{u}(t) = \bar{u} + \sum_{k} \left(\hat{u}_{k} e^{ik\omega t} \right)$$
$$x(t) = \bar{x} + \tilde{x}(t) = \bar{x} + \sum_{k} \left(\hat{x}_{k} e^{ik\omega t} \right)$$

- ➤ analysis of small periodic motions
- ➤ Liniearisation of (1)

$$\frac{du}{dt} + \frac{\partial R}{\partial u} \Big|_{\bar{u},\bar{x}} \,\tilde{u} + \frac{\partial R}{\partial x} \Big|_{\bar{u},\bar{x}} \,\tilde{x} + \frac{\partial R}{\partial \dot{x}} \Big|_{\bar{u},\bar{x}} \,\dot{\bar{x}} = 0$$

- → about steady equilibrium condition:
- ✓ Fourier expansion yields a complex valued linear system of equations

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline Ax = b \\ \hline A = \begin{pmatrix} \frac{\partial R}{\partial u} & -k\omega I \\ k\omega I & \frac{\partial R}{\partial u} \end{pmatrix} & x = \begin{pmatrix} \hat{u}_{real} \\ \hat{u}_{imag} \end{pmatrix} & b = \begin{pmatrix} \frac{\partial R}{\partial x} \hat{x}_{real} + k\omega \frac{\partial R}{\partial \dot{x}} \hat{x}_{imag} \\ -\frac{\partial R}{\partial \dot{x}} \hat{x}_{imag} - k\omega \frac{\partial R}{\partial x} \hat{x}_{real} \end{pmatrix} \\ \hline \bullet & \text{b computed by:} & \frac{\partial R}{\partial x} \hat{x}_{real} = \frac{\Delta R(\bar{u}, \bar{x} \pm \epsilon \hat{x}, 0)}{2\epsilon} & \frac{\partial R}{\partial \dot{x}} \hat{x}_{imag} = \frac{\Delta R(\bar{u}, \bar{x}, \pm \epsilon \hat{x})}{2\epsilon} \\ \hline & \text{Deutsches Zentrum} \end{array}$$

Folie 25 R,Voß, Kolloquium Zagreb 26 May 2010 > ZVG2007AE > 26.05.2010

LFD – RANS TAU Validation

LANN wing CT5, Ma=0.82, Re=7.5 mio, α=0.6°, Δα=0.25°, ω*= 0.204, pitch

Cp contour on upper surface of LANN wing CT5

LFD – RANS TAU Validation First Harmonic of Cp: LANN wing CT5

POD – Proper Orthogonal Decomposition

Objective: Generate an optimal basis of small order for a manifold of required CFD results.

Computation of solutions (snapshots) for:

- 1. harmonic of unsteady flow fields
- 1. harmonic of surface Cp distribution
- Several parameter combinations (flow solutions for varying frequency, oscillation mode, Mach number, AoA, …, → N snapshots
- Fill these solution vectors in colums of a matrix \rightarrow Snapshot-Matrix S
- Compute Eigenvalues and Eigenvectors of the symmetric W=S^TS
- Take those p Eigenvectors V, whose Eigenvalues have the biggest magnitude
 → p vectors V
- \rightarrow POD-Basis Φ = SV
- The N snapshot solutions and even more can be approximated by superposition of p POD basis vectors: $S_i = \Phi w_i$

POD – Example: Snapshots of 2D Oscillating Airfoil

- → NLR7301-airfoil, variation of: Ma, α , ω^* , oscill. Modes (9, 7, 5, 3)
- → <u>945 simulations</u> (Snapshots)

The first 10 POD Modes seem to have no physical meaning

POD

- A reduced POD Basis of vectors Cp(x) can be derived, all snapshots can be reconstructed by linear superposition.
- ✓ Only 45 POD POD modes sufficient to construct all 945 Snapshots → reduction of computational effort by factor of 20 ?

Conclusion

- ✓ Unsteady CFD methods (RANS) are well validated by windtunnel tests
- ✓ for aeroelastic applications CPU effort has to be reduced significantly
- → Different methods are developed and tested
- → A combination of several methods is promising (factor 1000)

