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Abstract

Mathematical model and numerical procedure of
multibody system in fluid flow is used in weakly
coupled approach to simulate forward dynamics
of wing with aileron model. Multibody system
(MBS) is formulated as DAE index 3, and sta-
bilised via underrelaxation. Navier-Stokes model
of viscous incompressible flow is discretised with
basic finite volume method on cell-centered col-
located mesh arrangement. Displacement of fi-
nite volume mesh is modeled via solving elasto-
static boundary value problem. The MBS gener-
alized forces pertinent to the aerodynamic loads,
after being calculated at the current deformed
configuration of the aeroelastic interface, are re-
duced to mass center of the corresponding rigid
body. The A-stable backward differencing for-
mula is used to integrate both the fluid and MBS
equations in time. In this paper, we focus our-
selves on the spatial coupling, meaning that prin-
ciple of virtual work (i.e. for small time steps)
is adopted in the analysis. A spatial coupling
algorithm applied on the aeroelastic interface is
formulated as a combination of the rigid and de-
formable regions. Rigid regions spread on ma-
jority of each body in MBS, while deformable
part of the aeroelastic interface is used to con-
nect rigid bodies. The problem is observed in
2D, using a model of a wing with control surface
in fluid flow, but the formulation is general so it
is extendable to 3D.

1 Introduction

In the linear theory of aeroelasticity, the aeroe-
lastic system is modeled as a coupled mathe-
matical system where the structural and aero-
dynamic part co-exist within the same mathe-
matical model. This approach has been success-
fully applied within the framework of the classic
flutter analysis [3, 14], where the criterion for
flutter prediction is established in the frequency
domain.

In the time domain, two distinct approaches
for numerical treatment of the aeroelastic prob-
lems can be identified. Within the monolithic
approach, the coupled equations that govern
fluid–structure interaction (FSI) are discretized
and solved within the same solver, so the mono-
lithic approach leads to the fully coupled numer-
ical solution. Drawback is that partitions posses
different dynamic characteristics and generally
requires different numerical technique.

Different way of modeling leads to the parti-
tioned approach, where the flow and structure
domains are treated separately within the inte-
gration process. These techniques permit inde-
pendent use of the suitable discretization meth-
ods for the different partitions. In partitioned
approach we distinguish weak and strong cou-
pled ones. Strong coupling is achieved by solv-
ing fixed-point problem either with Picard iter-
ations usually just underrelaxed or via Aitken-
type acceleration technique [19], or with Newton-
like method with approximate or exact Jaco-
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bian [12, 18, 13, 11, 25]. In weak coupling only
one solution for both fluid and structural par-
tition is sought in each time step. Generally,
overall conservation of forces and transferred en-
ergy in partitioned algorithm depend both on the
time and the spatial coupling used, and it cannot
be investigated separately.

The focus of this paper is on the spatial cou-
pling. This approach is based on conservation of
loads and virtual work over the interface. In con-
text of MBS, conservation is considered at global
(MBS as a whole), as well as on local level, for
(every body in MBS).

For completeness, other components of par-
titioned FSI formulation are briefly overviewed.
Since the fluid domain boundaries undergo a con-
siderable motion, the fluid dynamics equations
are to be solved on the dynamic mesh. For this
purpose, the Navier–Stokes equations are writ-
ten in the Arbitrary Lagrangian–Eulerian (ALE)
form, which is used for the formulation of the
governing equations of FSI as a three–field prob-
lem [8].

In three–field formulation, beside the flow field
and the deforming mesh, structure partition is
often represented by elastic body. For an elas-
tic body on the structural side, the positivity of
the deformation gradient tensor determinant is
ensuring that structural field has no topological
discontinuities. When MBS is on the structural
side, parts of the boundary, that is in vicinity
of body joints, need special attention since MBS
may pose surface topological discontinuity (if we
are not interested on discretising finest gaps in
structural system). In this paper, radial basis
function interpolation is used to represent elas-
tic pseudo-structure surrounding the joints, in
order to cope with surface topological disconti-
nuities that MBS can generate (on the flow scales
of interest) during the motion.

The paper is organized as follows. In next sec-
tion FSI algorithm is overviewed, with exception
of spatial coupling. Spatial aeroelastic coupling
is considered in third section. Finally, the paper
ends with an example and conclusion.
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Figure 1: Conventional Serial Staggering (CSS).

2 Fluid–structure interaction

A weakly coupled partitioned algorithm is de-
picted schematically in 1. Used CSS method
renders simulation first order consistent in time,
and spatial interface is considered in virtual dis-
placement terms. Loads and displacements are
explicitly exchanged at every time step.

2.1 Index 3 formulation of nonlinear
multibody dynamical systems

By putting together Lagrangian equations of the
first type:

M(x)ẍ + Φ∗Tx (x, t)λ = Q (ẋ,x, t)

x ∈ Rn , Φ∗x ∈ Rr×n , rank [Φ∗x] = r ,
(1)

and the kinematical constraint equations at the
position level:

Φ (x, t) = 0 , Φ (x, t) : Rn × R→ Rr , (2)

mathematical model of non-linear constrained
multibody dynamical system (MBS) can be es-
tablished as differential-algebraic system (DAE)
of index 3 in the general form (see i.e. [23]):

M(x)ẍ + Φ∗Tx (x, t)λ = Q (ẋ,x, t)

Φ (x, t) = 0 .
(3)

System configuration space is restricted by im-
posing holonomic constraints (2) at the position
level.

Finding the numerical solution of (3), with
given initial conditions, that have to satisfy (2),



is not a trivial task. It is well known that
some widely used second order accurate numeri-
cal schemes, which are unconditionally stable in
a linear problems, lead to the numerical instabil-
ity when applied to DAE index 3 problem, equa-
tion (3). The algebraic constraints contained
in (3) can be ”trigger” for this instability that
manifest itself via increasing oscillations in the
acceleration response. Actually, index 3 DAE
system of the equations (3) can be understood as
an ultimate case of the numerically stiff systems
with some frequencies taking an infinite value.
For this class of the systems, different energy pre-
serving and decaying schemes that exhibit differ-
ent kinds of the robust time–stepping character-
istics for the stiff equations in nonlinear struc-
tural dynamics and multibody dynamics are re-
ported in the literature [4]. In this paper DAE
system of index 3, equations (3), is integrated in
time by means of A-stable backward differenc-
ing formula and solution process is stabilised by
underrelaxation of both accelerations and veloc-
ities.

It is here to be noted that choice of MBS for-
mulation is not essential for whole aeroelastic
formulation used in this work, so the aeroelastic
interface described in section 3 can be used in a
straightforward way also if MBS is formulated in
e.g. DAE index 1 mathematical form.

2.2 Discretisation of a flow field

Incompressible isothermal homogeneous flow of
Newtonian fluid is described by the Navier–
Stokes equations, which are in ALE integral form
written as: ∮

∂V

vvv ·nnn dS = 0,

d

dt

∫
V

vvv dV +

∮
∂V

vvv(vvv − vvvs) ·nnn dS =

∮
∂V

ν(∇vvv) ·nnn dS

−
∫
V

∇pdV.

(4)

The variable vvvs denotes boundary surface veloc-
ity, vvv the fluid velocity, nnn a unit normal of the
boundary surface, ν is the kinematic viscosity
and p := p

ρ is ”kinematic” pressure .
The geometrical conservation law [8] (also

called space conservation law [7]):

d

dt

∫
V

dV =

∮
∂V

vvvs ·nnn dS, (5)

must be satisfied in order to avoid spurious os-
cillations [8, 9], and is solved together with the
Navier–Stokes equations (4). Formally, system
of equations (4) and (5) can be written as:

d

dt

∫
V

dV +

∮
∂V

(vvv − vvvs) ·nnn dS = 0,

d

dt

∫
V

vvv dV +

∮
∂V

vvv(vvv − vvvs) ·nnn dS =

∮
∂V

ν(∇vvv) ·nnndS

−
∫
V

∇p dV.

Obtained mathematical model is discretised by
basic finite volume (FV) method on the cell–
centered co–located grid arrangement.

The coupling of velocity and pressure field on
collocated grid arrangement is accomplished by
an approximate projection method in spirit of
Rhie-Chow [20] (see e.g. [26]).

2.3 Mesh deformation

In this paper cell–centered basic finite volume
method is used also for the mesh deformation
calculation. In order to represent aeroelastic
boundary, the mesh displacement is prescribed
at the vertices and then naturally interpolated
to the boundary cell faces. In the rest of the
fluid domain the mesh displacement is solved for
and interpolated from cell centers to vertices.

In order to determine FV mesh deformation
during the coupled aeroelastic simulation, the
Lamé–Navier boundary value problem for the
elastostatic body is solved in every time step for
the given boundary displacement.



In the case of isotropic and homogeneous lin-
ear elastic body in the absence of body forces,
the static equilibrium equation is given by:∫

V

∇ · σσσM dV = 0, (6)

where σσσM = 2µεεε+ λ tr(εεε)III is Caushy stress ten-
sor. The Lamé coefficients represent characteris-
tics of the material, and must satisfy conditions
µ > 0 and 3λ + 2µ > 0, and the infinitesimal
deformation tensor is εεε = 1

2

(
∇uuu+ (∇uuu)T

)
. Now

we can obtain Lamé–Navier equation, an elasto-
static equation (6) in terms of displacement field
uuu, which is used for the mesh deformation calcu-
lation:∫
V

∇ ·
[
µ∇uuu+ µ(∇uuu)T + λ (∇ · uuu)III

]
dV = 0.

(7)
Each component of the displacement is solved
separately, and inter-component coupling terms
are treated explicitly in the dimensional splitting
procedure. Consequently it is necessary to iter-
ate over the inter–component coupling, however
the convergence is speed up [15] by use of de-
composition of deformation gradient tensor on
its symmetric and skew-symmetric part:∮

∂V

2µ∇uuu ·nnn dS =

∮
∂V

[
µ
(
∇uuu− (∇uuu)T

)
− λ (∇ · uuu)III

]
·nnn dS,

(8)

where ∇ · uuu is calculated as tr(∇uuu) since inter-
polation of ∇uuu in FV faces is used to calculate
other terms, and is already in memory of a com-
puter in that stage. In the equation (8) the left
side is treated implicitly, while the source on the
right hand side calculated explicitly.

On the stationary parts of a mesh boundary,
either fixed or slip boundary condition are pre-
scribed. In Lamé–Navier boundary value prob-
lem mesh is fixed on boundary with Dirichlet
boundary condition:

uuu = 000 on Γfixed.

The slip boundary condition is obtained by pre-
scribing Neumann boundary condition for the
tangential component of the displacement:

(∇ [(III −nnnnnn) · uuu]) ·nnn = 000 on Γslip,

while for the normal component of the displace-
ment Dirichlet boundary condition is used:

uuu ·nnn = 0 on Γslip.

The slip boundary condition is preferable be-
cause it allows mesh to rotate more freely with
the structural system, so less deformed mesh is
produced during simulation. By allowing mesh
to slip on the upper and lower boundary while
fixing it at the inlet and outlet, a robust proce-
dure is obtained.

����
����
����
����

���
���
���

���
���
���

Γ̃

Γ′AΓ′W

Γslip

Γfixed

Γslip

Γfixed

Figure 2: Γ = Γ′W ∪ Γ̃ ∪ Γ′A, and Γ̃ = Γ̃W ∪
Γ̃A. Green dashed region is elastic part of MBS
”field”.

Now focus can be turned to description of the
spatial aeroelastic interface.

3 Spatial aeroelastic coupling

During the motion, a surface of the structural
system may experience topological changes. For
example, point at the aileron in the neighbor-
hood of the wing might be exposed to the fluid
flow in one moment and then sunk into the gap
(behind the wing) in the next one. So, in or-
der to move fluid mesh on the FSI interface, a
method is needed that can robustly cope with



the moderate changes of the interface topology.
For this purpose, due to flexibility with respect of
problem dimensionality and data centers distri-
bution, Radial Basis Function (RBF) interpola-
tion of Lagrangian data is used in the framework
of this analysis.

In contrast to the work done in [22], where
all MBS was represented with RBF interpolation
(RBFI) as one deformable pseudo-body, here the
surface is mapped rigidly on majority of aeroe-
lastic interface. In this paper a RBFI is used
to patch between the rigid bodies of MBS only
near the hinge that connects airfoil and control
surface (see fig 2). That zone, which spreads on
both bodies, absorbs topological discontinuities
that occur in vicinity of the control surface joint.
By following this route, elastic deformation is lo-
calized to a minor part of FSI interface.

RBFI is defined at any point occupied by
MBS. Since discontinuities are absorbed with
in RBFI as continuous deformations, also when
dealing with RBFI as representation of MBS it
make sense to speak about three–field aeroe-
lastic formulation. Here points that represent
MBS can be taken e.g. coarsened from FSI fluid
mesh boundary. As major parts of FSI interface
are mapped rigidly, one has to ”zip up” rigid-
to-deformable transition regions of the interface
with data centers that coincide with FV mesh
vertices. RBFI patches, between any two con-
nected rigid parts, are best chosen as small as
possible, but large enough to cope with topol-
ogy changes that MBS boundary will encounter
during simulation of flow field scales of interest.
In this paper MBS is represented in a three–field
formulation, as simply connected region in fluid
mesh.

Unlike some other methods used to define
the aeroelastic interface, such as the nearest
neighbor method [24] or the weighted residual
method [16, 17, 5], when using a RBFI no orthog-
onal projection is needed to create the aeroelastic
interface.

3.1 Consistent and conservative
aeroelastic interface

Firstly, let us adopt terminology conveniently
used in [6] for spatial coupling of aeroelastic
problems. As defined in [6], a consistent interface
is one that trensfers loads from constant pressure
exactly, but is not necessary conservative in sense
introduced in [10]. On the other hand, conser-
vative aeroelastic interface is one that conserves
the virtual work globally. As shown in [10],
global virtual conservativeness is achieved by us-
ing HT transfer matrix for loads, if transfer ma-
trix H is used for displacement. However, by
using RBFI in that approach, an effect of un-
physical oscillations in the transfered load field
might arise [2, 6]. When dealing with elastic bod-
ies that effect pose a problem. It also pose the
problem when dealing with MBS on structural
side, and RBFI part is shared between bodies,
since there are no means to guarantee that forces
(and moments in MBS problem) are the same on
both side of the RBFI aeroelastic interface for
each body in MBS. Loads can be enforced the
same on both sides of the aeroelastic interface
only globally, on MBS as a whole.

It is usually more important to have equal
forces and moments on each body in MBS than
to conserve virtual work, since wrong forces or
moments would affect dynamics of MBS. Fur-
thermore, non-conservativeness of aeroelastic in-
terface does not necessary affect the stability and
accuracy of the computation [6]. When spatial
and temporal discretization of partitions are dis-
sipative enough, the coupling error introduced
by information transfer is smaller then the spa-
tial and temporal discretization error. However,
when the stability becomes an issue, the differ-
ence of energy caused by non matching interface
should be such that MBS receives less energy
than is taken from a fluid.

In this paper consistent approach of construct-
ing FSI interface will be used, with consideration
to the rigid bodies MBS particularities. So, to
obtain the consistent interface, a constant pres-
sure should be exactly transfered over the inter-



face in terms of resulting force and moment.

3.2 Rigid aeroelastic interface

On a body with boundary Γ, surface force and
moment around point O are:

RRRF =

∮
Γ

σσσ ·nnn dS,

RRRM =

∮
Γ

r̃rr × (σσσ ·nnn) dS,

(9)

where r̃rr = rrr−O, and σσσ = −pIII+µ
[
∇vvv + (∇vvv)T

]
.

If we discretise (9) consistently with FVM, in
sense [6] (σ(xxx)σ(xxx)σ(xxx) = −p = const) we obtain:

RRRF = −p
∑
i∈ΓF

nnniAi,

RRRM = −p
∑
i∈ΓF

r̃rri ×nnniAi.
(10)

More generally, FVM consistent discretization
is 1:

RRRF =
∑
i∈ΓF

FFFiAi =
∑
i∈ΓF

fff i,

RRRM =
∑
i∈ΓF

r̃rri ×FFFiAi =
∑
i∈ΓF

r̃rri × fff i,
(11)

where r̃rri is a point on boundary face i of fluid
side of discrete aeroelastic interface ΓF , and FFFi =
σσσi·nnni. In this paper r̃rri is centroid of the boundary
face i.

Next, we will show that consistent approach on
a rigid interface is conservative. The motion of
any point rrr′ fixed on a rigid body can be written
as [1] rrr(t) = rrrO(t) +QQQ(t)rrr′. Now, at any time
t, for point rrr′ on a rigid body, infinitesimal rigid
displacement is of a form:

δuuu = δuuuO + (QQQ(δδδ)− III)QQQ(t)rrr′, (12)

where QQQ(δδδ) is orthogonal tensor of infinitesimal
rotation δδδ.

1 Order of consistency is not in focus of this paper.

Since infinitesimal rotations can be written in
the form QQQ = III +AAA, where AAA ∈ Skew, a virtual
rigid displacement can be rewritten as:

δuuu = δuuuO +AAA(δδδ) r̃rr(t), (13)

where r̃rr(t) = QQQ(t)rrr′, and δδδ is axial vector of
the operator AAA(δδδ). Now, for any point rrr′i on
the rigid body, a virtual displacement is δuuui =
δuuuO +AAA(δδδ) r̃rri(t).

For the rigid interface to be conservative for
a virtual work on discrete level, it is enough to
show that:

[
δuuu1 δuuu2 . . . δuuun

]
·


fff1

fff2
...
fffn

=
[
δuuuO δδδ

]
·
[
RRRF
RRRM

]
.

(14)

The conservativeness is easily proven by a sim-
ple calculation. By use of equation (13), we can
write left hand side of (14) as:∑
i∈ΓF

δuuui · fff i =
∑
i∈ΓF

(δuuuO +AAA(δδδ) r̃rri) · fff i

=
∑
i∈ΓF

δuuuO · fff i +
∑
i∈ΓF

(AAA(δδδ) r̃rri) · fff i

= δuuuO ·
∑
i∈ΓF

fff i + δδδ ·
∑
i∈ΓF

AAA(r̃rri)fff i

= δuuuO ·RRRF + δδδ ·RRRM . Q.E.D.
(15)

In (15), next to last equality follows from proper-
ties of triple (mixed scalar-vector) product, and
last from equations (11).

If we write equation (13) for every point in
matrix form, with use of the identity AAA(δδδ)r̃rri =
−AAA(r̃rri)δδδ, we obtain displacement transfer matrix
H:

δuuu1

δuuu2
...
δuuun

 =


III −AAA(r̃rr1)
III −AAA(r̃rr2)
...

...
III −AAA(r̃rrn)


[
δuuuO
δδδ

]
= H

[
δuuuO
δδδ

]
.

(16)



Now it is easy to see that loads are transfered
from a rigid body with HT :

[
III III . . . III

AAA(r̃rr1) AAA(r̃rr2) . . . AAA(r̃rrn)

]
fff1

fff2
...
fffn


=

[ ∑
ifff i∑

iAAA(r̃rri)fff i

]
=

[
RRRF
RRRM

]
.

(17)

Mesh displacement is being prescribed at mesh
vertices, and generally is mollified when calcu-
lated in FV polygonal face center. As a conse-
quence, when using conservative approach with
e.g. cell–centered collocated FVM, as load is
calculated at FV face centers, and displacement
is prescribed at the vertices of the FV mesh,
so generally only approximative conservation is
archived. It is trivial to show that, when inter-
face is rigid it is not important that points for
load calculation and mesh displacement prescrip-
tion do not coincide since whole interface is mov-
ing rigidly. It is so even if boundary points for
pressure (spherical part), and boundary points
at which deviatoric part of stress tensor is cal-
culated do not coincide, as long as all boundary
points move on the rigidly with the interface.

3.3 Radial basis function interpola-
tion aeroelastic interface

For parts of interface that undergoes topological
changes, RBFI is used to interpolate displace-
ment, so RBFI interface is used to ”patch” zones
between rigid parts of the interface.

Firstly we will define two sets of points, Y =
{yyy1, yyy2, ..., yyy|Y |} and X = {xxx1, xxx2, ..., xxx|X|} are
structural and fluid mesh points respectively,
that represent RBF part of FSI boundary, where
number of the structural and fluid mesh points is
denoted with |Y | and |X| respectively. Without
arising ambiguity, set of indexes of those point
sets will be denoted with same letters, X and Y .

In those two sets of points discrete displace-
ment is defined as U = uuu|X and u = uuu|Y .

Now, for any direction d of |D| dimensional
space 2, the radial basis function interpolation of
displacement, if done by using Lagrangian data,
can be written of the form [27]:

s(xxx) =
∑
j∈Y

αjϕ(|xxx− yyyj |2) +
∑
j∈Π

βjπj(xxx), (18)

where ϕ : R|D| → R is (conditionally) positive
definite function of order m and π ∈ Πm−1(R|D|)
is |D|-variate polynomial of degree at most m−1.

The coefficients αj and βj will be determined
from the interpolation condition for any of the
d ∈ D:

s(yyyj) = uj , j ∈ Y. (19)

After imposing orthogonality condition:∑
j∈Y

αjq(yyyj) = 0, ∀q ∈ Πm−1(R|D|),

the interpolation is unique if the structural
points yyyj form an uni-solvent system for the
polynomials. Consequence of that orthogonality
in the RBFI interface is that for constant polyno-
mial translations are recovered exactly. By using
the linear polynomial, infinitesimal rotations are
recovered exactly also. For load, as conjugated
aeroelastic variable, forces and moments are the
same on both sides of the conservative interface
when constant and linear polynomials are used
respectively.

Now, interpolation problem, equations (18)
and (19), can be written in the form:[

AY Y PY

PT
Y 0

] [
α
β

]
=

[
u
0

]
, (20)

where u is discrete value of interface displace-
ment uuu(xxx) and is imposed on the structural side
of aeroelastic interface, and AY Y = ϕ(|yyyi −
yyyj |2) ∈ R|Y |×|Y | and PY = πk(yyyi) ∈ R|Y |×Q.
Now the discrete values of displacement inter-
polant (18) are calculated at evaluation points

2 Set of indexes that correspond to unit base vectors
will be denoted with D, and its cardinal number |D| is
dimensionality of used Euclidean space.



X via coefficients given in (20):

sss|X =
[
AX Y PX

] [AY Y PY

PT
Y 0

]−1 [
u
0

]
=
[
H H̃

] [u
0

]
.

(21)

In the equation (21), AX Y = ϕ(|xxxi − yyyj |2) ∈
R|X|×|Y |, PPPX = πj(yyyi) ∈ R|X|×Q, and H ∈
R|X|×|Y | is the displacement transfer matrix.
Now, the displacement of the fluid mesh points
can be obtained from:

Ud = Hud, d ∈ D, (22)

The Wendland’s C2 class function with the
compact support is chosen for ϕ. For 2D and 3D
problems it is defined as ϕ(r) = (1−r)4

+(1+4r),

where r =
|xxx−yyyj |2

δ is normalized Euclidean dis-
tance, and δ is support radius.

3.3.1 Consistent RBFI interface

The method will be illustrated by example shown
in the Figure 3. Let MBS be consisted of the two
bodies (wing and aileron) and let data centers
and the evaluation points are separated accord-
ingly: Y = {w, a} and X = {W, A}. Then the
coefficients α and βββ given in (20) can be calcu-
lated by the expression:αααwαααa

βββ

 =

Aww Aaw Pw

AT
aw Aaa Pa

PT
w PT

a 0

−1 uw
ua
0

 ,
or the displacement transfer matrix is used to in-
terpolate fluid mesh boundary displacement (see
equation (21)):[

UW

UA

]

=

[
AWw AWa PW

AAw AAa PA

]Aww Aaw Pw

AT
aw Aaa Pa

PT
w PT

a 0

−1uw
ua
0

.
(23)

In the consistent approach the aerodynamic
loads are then transfered by means of equa-
tions (11).
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Figure 3: Blue dots indicate regions which are
topological singularities during aileron deflec-
tion. Green circles represent Lagrangian data
centers, and green dots represent data centers
which coincide with finite volume mesh vertices.
Green dashed region represents the elastic part
of the MBS field.

3.3.2 Conservative radial basis function
interpolation interface

The general opinion is that virtual work should
be conserved over the interface. This is accom-
plished by using transposed displacement trans-
fer matrix for load transfer matrix:

fd = HTFd, d ∈ D, (24)

where Fd and fd are loads on fluid and structural
side respectively.

In FSI problem with MBS, the loads could
be transfered conservatively such that they are
first transfered by means of equation (24) to the
points used for mesh deformation (green circles
on fig 3), and then reduced from this points to
mass center of every body in MBS that corre-
sponds to given part of the interface defined at
some reference configuration. Then one could
rewrite equation (24), by the use of (23), to ob-
tain load transfer matrix for the example used in
this paper:

fw
fa
0


=

Aww Aaw Pw

AT
aw Aaa Pa

PT
w PT

a 0

−1AT
Ww AT

Aw

AT
Wa AT

Aa

PT
W PT

A

[FW

FA

]
,



Figure 4: Comparison of methods from [22, 21]
where whole aeroelastic interface was deformed
via RBFI (red lines), and formulation used in
this paper (black lines). For visualization rea-
son highly coarse mesh is used. It can be seen
that meshes coincide on RBFI part of the inter-
face, while differing on parts of boundary that is
mapped rigidly in this method (with exception
of displacement in data centers). Second image
is the detail of an aft part of the configuration
displayed in the first image.

from which it follows:Aww Aaw Pw

AT
aw Aaa Pa

PT
w PT

a 0

fw
fa
0


=

AwW AwA

AaW AaA

PT
W PT

A

[FW

FA

]
.

(25)

From last equation in system (25), we obtain:

PT
wfw + PT

a fa = PT
WFW + PT

AFA.

Thus, forces and moments are the same on both
sides of the interface globally for all MBS, but
there are no means in this framework to also en-
force PT

b fb = PT
BFB for each body in MBS, and

this would produce wrong MBS dynamics.

4 Numerical example: MBS in
fluid flow

The described methodology is applied to the flow
induced MBS dynamics in the framework of a
weakly coupled simulation of the wing-aileron
multibody model. The flow around NACA 65-
012 airfoil is laminar, at Re = 1 · 105. The spa-
tial schemes within the flow solver are central
differencing scheme for the diffusive term, and
stabilised scheme for the convection. For the
data centers of the RBFI interface, a set of points
on the wing and aileron was chosen to represent
the structural system displacement. In used ex-
ample, distribution of the points that represent
structural system is depicted on fig 3.

5 Conclusion

This paper is part of effort to develop the spa-
tial coupling interface that can be successfully
applied for MBS on the structural partition side.
For that purpose, consistent RBFI aeroelastic in-
terface is constructed on minor parts of the in-
terface. With the conservative rigid parts, by-
major-parts conservative weakly coupled FSI so-
lution algorithm is constructed for the simulation
of MBS in viscous incompressible fluid flow. For
each partition, a A-stable backward differencing
formula is used.

In this paper it was shown for rigid bodies that

Figure 5: MBS in fluid flow. Red line indicates
reference chord position



consistent approach for FSI interface is conser-
vative, in virtual (infinitesimal) terms.

Since well-calculated aerodynamic loads on
each body are crucial for the accurate time in-
tegration of the MBS, consistent RBFI interface
Γ̃ = Γ̃W ∪ Γ̃A is used on minor part of the aeroe-
lastic interface Γ (see fig 2). The generalized
forces pertinent to the aerodynamic loads are re-
duced to center of gravity of the corresponding
body, after being calculated at the fluid mesh of
an appropriate part of the FSI boundary.

The described methodology is applied for a
motion simulation of an airfoil with control sur-
face in incompressible viscous fluid flow. Pre-
sented FSI spatial interface can be used both in
2D and 3D, as long as surface topological changes
are moderate.
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jak. Numerical fluid-structure interaction
of multi-body dynamical systems in in-
compresible flow. In Conference Proceed-
ings CMND2009, Split, Croatia, September
2009.

[22] Z. Terze, D. Matijašević, M. Vrdoljak, and
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[24] P. Thévenza, T. Blu, and M. Unser. Inter-
polation revisited. IEEE Med. Trans. Med.
Imag., 19 (7):739–758, 2000.

[25] J. A. Vierendeels. Strong coupling of parti-
tioned fluid-structure interaction problems
with reduced order models. In ECCOMAS
CFD 2006, pages 5–18, 2006.
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