
NUMERICAL INTEGRATION ALGORITHM IN LIE-GROUP SETTING FOR

DYNAMICS OF MECHANICAL SYSTEMS

Zdravko Terze
a
, Dario Zlatar

a
, Andreas Müller

b

a
Dept. of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture,

University of Zagreb,

Ivana Lučića 5, 10000 Zagreb, Croatia, zdravko.terze@fsb.hr

b
Institute of Mechatronics,

Reichenhainer Str. 88, 09126 Chemnitz, Germany, andreas.mueller@ifm-chemnitz.de

Abstract

Numerical integration algorithm based on

mathematical model in Lie-group setting for

dynamic simulation of constrained mechanical

systems is proposed in the paper. Mathematical

model is shaped as differential-algebraic system

of equations (DAE) of index 1, while system

configuration space is modelled as Lie-group

consisting of elements translational linear

spaces and SO(3) rotation groups. The basis of

the method is Munthe-Kaas algorithm for ODE

on Lie-groups, which is re-formulated and

expanded to be applicable for the integration of

constrained multibody dynamics in DAE-index-

1 form. The constraint violation stabilization

algorithm at the generalized position and

velocity level is introduced by using two

different algorithms: a first one that operates

directly on the ‘state-space’ manifold and, a

second one, that uses Cartesian rotation vectors

as local coordinates for the generalized

positions. A numerical example that

demonstrates the proposed integration

procedure is described and discussed at the end

of the paper.

1. Introduction

A mathematical and numerical modeling of

large 3D rotations and computational treatment

of kinematical constraints are central problems

in domain of multibody dynamics. Unlike

problems that belong to the ‘classical’ structural

dynamics that were focused primarily on the

small displacements leading to linear problems,

multibody dynamical models had to deal with

kinematical constraints, large rotations and

geometrical non-linearities from the very

beginning of this discipline of the

computational mechanics (Schiehlen, 1997).

In order to treat geometrical non-linearities

in numerically stable and efficient manner,

design of the numerical integration methods

that operate on manifolds and Lie-groups

(instead of linear vector spaces) offer some

attractive features such as numerical robustness

and avoidance of the kinematical singularities

as well as numerical efficiency of the code.

However, working directly on non-linear

manifolds assumes that integration algorithm is

designed appropriately, since vector-space

based mathematical operation, which are basis

of the almost all standard integration

ODE/DAE routines (such as methods based on

Runge-Kutta schemes, Adams-Moulton,

Newmark, Generalized - α method, BDF

algorithm etc.), are no longer valid.

Along this line, the goal of the paper is to

propose mathematical model and numerical

integration algorithm based on Munthe-Kaas

Lie-group integration scheme (Munthe-Kaas,

1998) that will be pertinent to multibody

dynamics application cases. The state space of

multibody system is modeled as a manifold

(Lie-group) and mathematical model of the

numerical scheme is shaped as DAE of index 1.

The method is primarily focused on dynamics

of rigid body multibody systems, although its

application can be easily extended also on the

systems that possess elastic components.

2. Geometric DAE integration procedure

for MBS

2.1 Lie-group ODE integrator

The configuration of a rotating rigid body is

given by a rotation matrix R that belongs to

Special Orthogonal Group SO(3):

 1det,:)3(3x3  RRRR I
TSO R . (1)

mailto:zdravko.terze@fsb.hr
mailto:andreas.mueller@ifm-chemnitz.de

From the geometrical point of view, SO(3) can

be considered as a differential manifold (space

with different possibilities of parametarizations

on which we can do calculus). Tangent vectors

R to SO(3) at point)3(SOR of the manifold

belong to the tangent space)3(SOTR ,

)3(SOTRR . Moreover, SO(3) has the

properties of Lie-group, where the tangent

space at the group identity I has an additional

structure. This vector space is equipped with

matrix commutator and constitutes Lie-algebra

of SO(3), the set of skew-symmetric matrices

denoted by so(3). The element of Lie-algebra

soω
~

 can be identified with 3R via

mapping operator which maps a vector 3Rω

to a matrix soω
~

. Between the elements of

the group)3(SOR and Lie-algebra

soω
~

 exists natural correspondence via

exponential map (Iserles, Munthe-Kaas, Norsett

and Zanna, 2000; Hairer, Lubich and Wanner,

2006; Müller, 2005) and the expression

)
~

exp()(ωR tt  is solution of the inital value

problem

ωRR
~

)()(tt  , I)0(R . (2)

Also, the Lie-algebra element ω~ defines left-

invariant vector field
ω

X~ on SO(3) via relation

)
~

()(~ ωRX Rω
L ,)3()(~ SOTRω

RX  , where the

tangent map)3()3(:)
~

(TSOTSOL  ωR is

given as ωRωR

~
)

~
(L defining left kinematic

Poisson relation ωRR
~

 . Equivalently, instead

of using body coordinates ω
~

, the right Poisson

equation can be formulated as RωR S

~
 by

using angular velocity expressed via spatial

coordinates Sω
~

 (Müller, 2010). As explained

above, left and right Poisson kinematic equation

represent differential equation on SO(3), since

)3(SOR and the angular velocity tensor (ω
~

or Sω
~

) belongs to Lie-algebra so(3). In the case

when angular velocity is not a constant skew-

symmetric matrix (as it is the case in the

equation (2), which has solution

)
~

exp()(ωR tt ), body kinematics that evolves

on SO(3) is to be computed numerically. In the

general setting, the objective is to find solution

of differential equation on a matrix Lie-group

G, with Lie-algebra g, in the form

)())(()(tYtYAtY  , (3)

where GY )0(and gYA )(for all GY 

and right trivialization is used. The equation (3)

can be numerically solved by using different

geometric integration methods (Iserles,

Munthe-Kaas, Norsett and Zanna, 2000; Hairer,

Lubich and Wanner, 2006), such as Munthe-

Kaas algorithm (Hairer, Lubich and Wanner,

2006; Munthe-Kaas, 1998) that assumes result

in the form

0))(exp()(YtutY  , (4)

where)(tu is the solution of

)))(((exp 1 tYAdu u
 , 0)0(u . (5)

By following this route, the numerical

solution of kinematic equation (3) can be

incorporated into the computational procedures

based on Newton-Euler formulation, where

rotational dynamics of rigid body is studied

directly on SO(3). This leads to more efficient

procedures since no local parametarisation of

3D rotation is needed.

2.2 Lie-group DAE integration

procedure

2.2.1 Procedure framework

The configuration space of MBS is modeled

as)3(...)3(... 33 SOSOG  RR , which

is a n-dimensional manifold with Lie-group

properties, consisting of translational and

rotational kinematical domains of each rigid

body in MBS. The Lie-group composition

operation GGG  is introduced by

21 pppcom  , where Gppp com  , , 21 and the

identity element e of the group is defined as

Gpppeep  , . The Lie-algebra

GTeg (vector space that is isomorphic to

nR) is defined as the tangent space GTp at the

identity p=e. The tangent vector in GTp (at any

point Gp) can be represented in Lie-algebra

g via derivation pL of the left translation map

ypyGGLp  , :  .

Thus, for y=e, we can define bijection

ΩΩ
~

)(
~

 , :)( eLGTeL ppp g , where

Ω
~

)( eLp is directional derivative of pL at the

point y=e in direction of gΩ
~

 (since G is Lie-

group, the element of Lie-algebra Ω
~

 defines

left invariant vector field on G, similarly as it

was the case with SO(3)).

To incorporate kinematical constraints of

MBS, the function mG R :Φ are imposed on

G, meaning that system is constrained to evolve

on the n-m dimensional sub-manifold

 0)(:  pGpS Φ . Consequently, dynamic

equations of MBS are shaped in the form (Brüls

and Cardona, 2010)

0)() , ,()( λCvQv ptpp TM

0)(pΦ

v
~

)( eLp p
 ,

(6)

where M is nn dimensional inertia matrix,
nRv ,  Tkk ωωvvv ,..., , ,..., 11 are system

velocities (k bodies are assumed), Q represents

external and non-linear velocity forces,
mRλ is the vector of Lagrangian multipliers

and C is nm dimensional constraint gradient

matrix, such that npp R ΩΩCΩΦ ,)(
~

)(

is valid. The equation (6) represents DAE

system of index 3. Within the framework of the

proposed integration procedure, the equation

(6) will be re-shaped into the DAE of index 1

form by including kinematical constraints at the

acceleration level 0),,(vvΦ  p (instead of

0)(pΦ) and integrated by the routine based

on the Munthe-Kaas algorithm.

To ensure that kinematical constraints are

satisfied during integration, constraint violation

of the system velocities nRv and

generalized positions Gp will be corrected

by using stabilization algorithm.

2.2.2 Integration algorithm

As introduced, the configuration space of

MBS is modeled as Lie-group

)3(...)3(... 33 SOSOG  RR where

translation and rotation of each rigid body is

included in the n-dimensional configuration

domain and element of the group is given as

) ,..., , ,...,(11 kkp RRxx . However, since

proposed time integration routine operates

‘simultaneously’ at the generalized positions

and generalized velocities, a system has to be

modeled on the 2n-dimensional Lie-group

 333 ...)3(...)3(... RRR SOSOS

TGsoso )3(...)3(... 3R (a system ‘state

space’) with the element

)
~

 , ,...
~

 , ,..., , ,..., , ,...,(1111 kkkkq ωωvvRRxx , (7)

and its Lie-algebra

 333 ...)3(...)3(... RRR sosos

333 RRR  with the element given as

)
~

, ,...
~

 , ,...,,
~

 ,...,
~

 , ,...,(1111 kkkkz ωωvvωωvv
 . (8)

By confining ourselves on a single body system

to keep formulation short, we introduce

operations in Lie-group S and its Lie-algebra

s as follows.

Product in S :

) , , ,(), , , () , , ,(hdgcfbeahgfedcba  .

Addition in s :

) , , ,(), , , () , , ,(ddccwwvvdcwvdcwv  .

Multiplication by scalar in s :

) , , ,() , , ,(dcwvdcwv   .

Exponential map in s :

) ,),exp(,() , , ,exp(dcwvdcwv  .

Bracket in s :

)0 ,0 , ,0()], , , (), , , ,[(wwdcwvdcwv  .

Here, on the right hand side of definitions, ‘  ’
is the multiplication in SO(3), ‘+’ is addition in

3R and so(3) and exp is exponential map on

so(3). The operations in s and S of multibody

system, consisting of system of k bodies, is

defined component-wise equivalently as for a

single body system.

With all Lie-group operations in place, a

differential equation describing dynamics of

MBS on Lie group S can be written in the

form

qqFq)( , (9)

where Sq and sS :F is given

by zqF  : , where elements q and z are given

by (7) and (8). During evaluation of zqF  : ,

the variables
T

kk 




 ωωvvv
 ~

, ,...
~

 , ,..., 11 are

determined by the system dynamics equation



























ξ

Q

λ

v

0C

C TM
, (10)

which has to be solved (linear algebraic system

for variables v and λ) within integration

algorithm of the differential equation (9).

The equation (10) represents first two

equations of system (6), shaped as DAE of

index 1, where the acceleration kinematical

constraints 0),,(vvΦ  p are introduced as

ξvC  (Terze and Naudet, 2008).

The differential equation (9) of the system

dynamics on S has the same form as

differential equation (3) and can be solved by

using Munthe-Kaas (MK) type of integration

algorithm (Munthe-Kaas, 1998). Similarly as it

was the case with (3), (9) can be solved by

introducing local integration coordinate u in s

that satisfy

))((exp 1 qFdu u
 , 0)0(u . (11)

Within MK method, (9) is integrated in s and

numerical solution is than reconstructed on S

via exponential mapping. The algorithm itself

can be given in the form (Munthe-Kaas, 1998)

si

qq w

, . . . ,2 ,1 for

10



 

) , ,dexpinv(
~

)) ,exp(,(

~

0

1

1

nkuk

quhcFk

kahu

iii

iii

i

j jiji





 




 


s

j jjkbhv
1

~

end

) ,exp(0qvqw 

where the coefficients are given by the classical

s-stage nth order Runge-Kutta method's Butcher

table (Munthe-Kaas, 1998) and function

dexpinv is defined as follows (Iserles, Munthe-

Kaas, Norsett and Zanna, 2000; Hairer, Lubich

and Wanner, 2006; Munthe-Kaas, 1998)

      ,, . . . , ,
!

 ,
2

1
) , ,dexpinv(

1

2

kuuu
p

B
kuknku

p
n

p

p







 .

The variables iii kku
~

,, are MK method

internal integration variables (Munthe-Kaas,

1998; Celledoni and Owren, 2003) (similar as

those that are defined within the framework of

RK algorithms - MK methods reduce to RK

algorithms when operate in vector space),

which have the same format as z given by (8),

see also (11).

2.3 Constraint violation stabilization

procedure

A numerical solution obtained by the

described algorithm will satisfy constraint

equation at the acceleration level 0),,(vvΦ  p

automatically, since this equation is directly

incorporated in the function evaluation

sS :F via formulation (10). However, the

constraint equations for the generalized

positions 0)(pΦ and velocities 0),(vΦ p

(which can be also written in the form

ξvC )(p (Terze and Naudet, 2008)) that are

also part of DAE formulation (6), will be

unavoidably violated during the straightforward

integration based on the MK type of algorithm

(Terze and Naudet, 2010).

For the purpose of constraint stabilization

procedure that operates directly on S , we

propose a projective method that is based on

nonlinear constrained least square problem

given in the form

 

2

ˆ

ˆ
min

w
v, vv 


















kk

kk

p

pp

kk

, 0)(pΦ ,

I
T

iiRR , 0),(vΦ p ,

(12)

(where
w

 denotes the weighted norm). The

projected variables have to satisfy constraint

equations 0)(pΦ , I
T

iiRR and

0),(vΦ p to obtain stabilized values kk ,p v ,

as expressed in, while kkp v̂,ˆ are ‘un-

stabilized’ values that are obtained from the

integrator for the current integration step. It

should be emphasized here that described

constraint stabilization at the velocity level (that

brings stabilized value kv from the initial

integration value kv̂) is a ‘linear’ one-step

projective process, while ‘generalized position’

kp stabilization requires iterative procedure.

In the sequel, a linear procedure also for

‘position’ variables, based on Cartesian rotation

vectors (Cardona and Geradin, 1988) that are

related with)3(SOi R by the equation

)
~

exp(...
~

2

1~
1

2

iiii ΨΨΨR  , (13)

will be introduced. Along this line, to design

non-iterative constraint stabilization procedure

for the variables) ,..., , ,...,(11 kkp RRxx , we

note that stabilized constraint equation at the

generalized position level should read

0)(pΦ , (14)

but, because of the numerical errors, current

integration values of p

do not satisfy (14)

completely, yielding

0)ˆ(pΦ , (15)

where p̂
are ‘un-stabilized’ values that are

results of the current integration step. To

calculate ‘final’ (stabilized) values of p that

satisfy (14) for the current step, we write

,ˆ ,...,ˆ(11 kkp xxxx 

))
~

exp(ˆ),...,
~

exp(ˆ
1 ik ΘRΘR 1 

(16)

where ii Θx
~

,

are correction values that have

to be introduced to bring p̂ in accordance with

(14). In (16), ix

is a ‘standard’ vector

correction of the linear displacement (body

position), while iΘ
~



is Lie-algebra vector

component representation (expressed in skew-

symmetric matrix/tensor form pertinent to so(3)

by using body-fixed coordinate system) of a

small rotation correction vector
iRΘ needed

to adjust orientation of the body i to be in

accordance with the (14). Furthermore, by

following (Cardona and Geradin, 1988), the

variations
iRΘ and iΨ are related by

iiT
i

ΨΨΘR )( , (17)

where)(iT Ψ

is a tangent operator that relates

tangent spaces)3(SOTI and)3(SOT
iR , see

(Makinen, 2001; Cardona and Geradin, 1988)

for the details.

To proceed with the design of the non-

iterative ‘position’ constraint stabilization

procedure, we will adopt the algorithm

proposed in (Yoon, Howe and Greenwood,

1994) and adjust it to be valid within the

manifold S computational framework. Since

‘original’ constraint equation (14) is not

satisfied due to the integration numerical errors,

it is proposed in (Yoon, Howe and Greenwood,

1994) to expand (14) by adding variation

correction term as

0ˆ  ΦΦ  . (18)

The equation (18) is then used as a basic

equation for calculation of the necessary

increments of the system coordinates by

linearising Φ and keeping only first variation

of the coordinates into consideration. However,

in the case of calculation on S via variables p,

we can not proceed with equation (18) directly

since S is a manifold (a non-linear space) and

addition that would combine evaluation of the

function Φ at the different points on the

manifold is not a defined operation.

Therefore, we will adopt vectorial

representation of the rotations by using iΨ

instead of)3(SOi R and, by noticing that we

can write  q̂)ˆ(ΦΦ p , the equation (18) can

be written in the ‘local’ vectorial form

0)/()ˆ(









Ψ

x
ΦΦ




qp , (19)

where we adopted local system coordinates as

 Ψxq . By solving equation (19) for the

variations Ψx  , , after assuming that correction

increments are small enough that can be

substituted by the first variations i.e.

ΨΨxx   , , we are able to find

correction terms that via relation qqq  ˆ i.e.
































Ψ

x

Ψ

x

Ψ

x

ˆ

ˆ
, (20)

bring unstabilized values q̂ into the stabilized

variable q that satisfy ‘position’ constraint

equation   0qΦ
for the current integration

step.

However, the equation (19) is undetermined

and, to make it solvable, we will assume that

correction terms Ψx  ,

are completelly ‘sunk’

into the constrained subspace that are spanned

by the rows of the constraint matrix
T)/(qΦ . Thus, we can write

εqq
T)/( Φ , (21)

where vector mRε of the q
projection

values onto the T)/(qΦ constrained subspace

has to be determined. By substituting (21) into

(19), we can write

 )ˆ()/)(/(
1

p
-T
ΦΦΦ qqε  , (22)

where mmT  R)/)(/(qq ΦΦ is invertible

under assumption that system constraints are

independent and T)/(qΦ has full row rank.

By substituting (22) back to (21), we obtain

final equation for determination of the needed

correction values in the form (Yoon, Howe and

Greenwood, 1994)

 

.

)ˆ()/)(/()/(
1













Ψ

x

ΦΦΦΦ





 p
-TT qqqq

 (23)

Once we determine stabilization correction

terms Ψx  ,

from (23), a position correction

for the linear displacement x

has a final value

for the step (variable x is also a ‘global’

coordinate of the manifold S), while the final

corrected value of the)3(SOi R should be

calculated on the basis of Ψ via relation

)
~~

ˆexp()
~

exp(ˆ
iiiii ΨΨΘRR  . (24)

It shold be emphasised that the proposed

stabilization algorithm is straightforward and

non-iterative, but it should be undertaken

frequently during the integration process since

the small correction values that can be

substituted by the first variations are assumed.

3. Numerical Example

As an example of the case with large 3D

rotations domain, a dual-spin satellite (also

known as a gyrostat) is considered. The satellite

is illustrated in Figure 1. It is composed of two

rigid body connected by a revolute joint. There

is usually large section, called the rotor (A) who

contains satellite housekeeping equipment

(solar arrays, main control computer and etc.)

and platform (B) which usually contains the

actual communications repeaters. The

considered satellite is based on the model of the

dual-spin satellite GOES-7. The mass and

inertia tensor of the rotor are 300kg and
2

A m kg)150,175,175(diagJ . The platform's

mass and inertia tensor yield 100kg and
2

B m kg)50,75.43,75.43(diagJ
respectively.

The reference points and initial conditions

are  T000A X ,  T75.100B X ,

IR A , IR B ,   rad/s100A0

T
ω

and

  rad/s1.000B0

T
ω . Furhermore, a constant

torque   Nm0200100A

Ta M is applied to the

rotor.

A matematical model for the dynamic

simulation of satellite is shaped as a

differential-algebraic system (DAE) of index 1.

Translational and rotational parts of system

dynamical equations are given in the standard

form

13AAA  0Cv
ifTm  , (25)

13BBB  0Cv
ifTm  ,

(26)

aifT
AAAAAAAA

~~
MRXωJωωJ   ,

(27)

13BBBBBBB

~~
 0RXωJωωJ

ifT ,

(28)

where Ax and Bx are the rotor and platform

mass center positions, Aω and Bω represents

rotor and platform angular velocities, Am , Bm ,

AJ and BJ are rotor and platform masses and

tensors of inertia, if stands for joint reaction

force, AC

and BC are rotor and platform

constraint matrices, AX

and BX are rotor and

platform mass centers in the local coordinate

system fixed to the bodys, and AR

and BR are

rotation matrices that relates body coordinate

system to inertial coordinate system.

Mechanical system constraints at position,

velocity and acceleration level that represent

joint between rotor and platform are given as

13BBBAAA  0XRxXRx ,

(29)

  12B3BA2AB3BA1A)()( 0ERERERER
TTT

,

(30)

15

B

B

A

A

B3BA2A31A2AB3B31

B3BA1A31A1AB3B31

BB3AA3

~
)(

~
)(

~
)(

~
)(

~~





 











































0

ω

v

ω

v

ERER0ERER0

ERER0ERER0

XRIXRI

TT

TT
,

(31)

















































B

B

A

A

B3BA2A31A2AB3B31

B3BA1A31A1AB3B31

BB3AA3

~
)(

~
)(

~
)(

~
)(

~~

ω

v

ω

v

ERER0ERER0

ERER0ERER0

XRIXRI









TT

TT

(32)

























BB3BBA2AB3BA2AAAA2AAB3BA2AB3BB

BB3BBA1AB3BA1AAAA1AAB3BA1AB3BB

BBBBAAAA

)
~~

)(
~

)
~

(()
~~

)(
~

)
~

((

)
~~

)(
~

)
~

(()
~~

)(
~

)
~

((

~~~~

ωEωREREREωRωEωREREREωR

ωEωREREREωRωEωREREREωR

XωωRXωωR

TTTT

TTTT  

where  A3A2A1  , , EEE  and  B3B2B1  , , EEE  are 

two triads of orthogonal unit vectors fixed to 

the rotor and platform. The system constraint 

matrix is shaped in the form 

































B3BA2A31A2AB3B31

B3BA1A31A1AB3B31

BB3AA3

~
)(

~
)(

~
)(

~
)(

~~

ERER0ERER0

ERER0ERER0

XRIXRI

C
TT

TT
,
 

(33) 

which allows for assembling equations of  system dynamics in DAE of index 1 form 





















































































it

it

if

TT

TT

TTT

TTT

m

m

2

1

B

B

A

A

111131B3BA2A31A2AB3B31

111131B3BA1A31A1AB3B31

131333BB3AA3

A2ABB3A1ABB3BBB333333

13133333B3333

B3BAA2B3BAA1AA3333A33

131333333333A

~
)(

~
)(

~
)(

~
)(

~~

~~~

~~~







ω

v

ω

v

000ERER0ERER0

000ERER0ERER0

000XRIXRI

ERREERRERXJ000

00I0I00

ERREERRERX00J0

00I000I









 

 

)
~~

)(
~

)
~

(()
~~

)(
~

)
~

((

)
~~

)(
~

)
~

(()
~~

)(
~

)
~

((

~~~~

~

~

BB3BBA2AB3BA2AAAA2AAB3BA2AB3BB

BB3BBA1AB3BA1AAAA1AAB3BA1AB3BB

BBBBAAAA

BBB

13

AAAA

13













































ωEωREREREωRωEωREREREωR

ωEωREREREωRωEωREREREωR

XωωRXωωR

ωJω

0

MωJω

0

TTTT

TTTT

a

(34)

In equation (34), the multiplier
if is

interpreted as joint reaction forces, whereas it
1

and it
2 are interpreted as joint reaction torques

in the revolute joint along axis A1E and A2E .

The equation (34) is shaped as DAE of index 1

and integrated by the routine based on 4rd order

explicit Munthe-Kaas algorithm. The results of

numerical integration are given by the Figures

2 – 6.

Mathematical model is implemented in the

MATLAB programming environment, while

ADAMS package has been used only for post-

processing based on the off-line calculation via

described matematical model. The spatial

trajectories of rotor and platform mass centres

are given in Figure 2. The results shown in

Figure 3 and 4 present components of the

position of rotor and platform mass centres and

angular velocitys.

Figure 1. Sequence of the motion animation (post-

processed via ADAMS).

Figure 2. Spatial trajectories of rotor and platform

mass centres.

Figure 3. Rotor and platform angular velocities.

Figure 4. Rotor and platform mass center positions.

Figure 5. Elements of rotation matrix

AR (indicated

by indices).

Figure 6. Elements of rotation matrix

BR (indicated

by indices).

Proposed integration algorithm operates

directly on the Lie-group of the system state

space, avoiding kinematical singularities that

are always present within the vector space

formulations of the large 3D rotation domain,

such as one presented here. By overviewing

Figures 2–6 which are showing integral curves

of the system position, angular velocity and

elements of rotation matrices)3(A SOR

and

)3(B SOR , it is visible that all obtained results

are smooth functions without any

discontinuities.

4. Conclusions

The Lie-group integration method for

constrained discrete mechanical systems is

proposed in the paper. The method operates on

Lie-group of system configuration space that is

modeled as ‘state space formulation’. The

system constraints are introduced in the

mathematical model via DAE of index 1

formulation.

In order to stabilize constraint violation

during integration procedure, two constraint

stabilization algorithms are described: a

constraint violation minimization by using

constraint manifold projection methods based

on solving nonlinear constrained least square

problem (the algorithm is based on global

system coordinates and operates directly on the

system state-space manifold) and projections

along the constraint gradients by using (local)

Cartesian vector rotation parameterization.

Since integration algorithm operates directly

with angular velocities and rotational SO(3)

matrices, meaning that no local (generalized)

coordinates are introduced, the method

circumvent problems of kinematic singularities

of rigid body three-parameters rotation basis,

re-parameterization of system kinematics

during integration as well as numerical non-

efficiency of the kinematic differential

equations.

Within the presented example, method

showed numerical robustness. It is easy-

applicable on general class of discrete

mechanical systems with the kinematical

constraints and large three-dimensional rotation

fields of the system elements.

Acknowledgements

The first and second author acknowledge the

support of the Croatian Science Foundation

under the contract of the project ‘Geometric

Numerical Integrators on Manifolds for

Dynamic Analysis and Simulation of Structural

Systems’ that is conducted at Chair of Flight

Vehicle Dynamics, Faculty of Mechanical

Engineering and Naval Architecture, University

of Zagreb.

5. References

Brüls, O. and Cardona, A., 2010. On the Use of

Lie Group Time Integrators in Multibody

Dynamics. Journal of Computational and

Nonlinear Dynamics, 5.

Cardona, A., Geradin, M., 1988. A Beam Finite

Element Non-Linear Theory with Finite

Rotations. Int. Journal for Numerical

Methods in Engineering, 26, 2403–2438.

Celledoni, E., Owren, B., 2003. Lie Group

Methods for Rigid Body Dynamics and

Time Integration on Manifolds. Comput.

Methods Appl. Mech. Engrg., 192, 421–

438.

Hairer, E., Lubich, C. and Wanner, G., 2006.

Geometric Numerical Integration. Springer.

Iserles, Munthe-Kaas, Norsett and Zanna, 2000.

Lie-group methods. Acta Numerica, 9, 215-

365.

Makinen, J., 2001. Critical study of Newmark-

scheme on manifold of finite rotations.

Computer Methods in Applied mechanics

and Engineering, 191, 817–828.

Müller, A., 2005. Group Theoretical

Approaches to Vector Parameterization of

Rotations. Journal of Geometry and

Symmetry in Physics, 4, 1-30.

Müller, A., 2010. Approximation of finite rigid

body motions from velocity fields. Journal

of Applied Mathematics and

Mechanics/Zeitschrift für Angewandte

Mathematik und Mechanik (ZAMM), 90,

514-521.

Munthe-Kaas, H., 1998. Runge–Kutta methods

on Lie groups, BIT 38, 92–111.

Schiehlen, W., 1997. Multibody system

dynamics: roots and perspectives.

Multibody System Dynamics 1, 149–188.

Terze, Z. and Naudet, J., 2008. Geometric

Properties of Projective Constraint

Violation Stabilization Method for

Generally Constrained Multibody Systems

on Manifolds. Multibody System

Dynamics, 20, 85-106.

Terze, Z., Naudet, J., 2010. Structure of

Optimized Generalized Coordinates

Partitioned Vectors for Holonomic and

Non-Holonomic Systems, Multibody

System Dynamics, Spinger, 24.

Yoon, S., Howe, R.M., Greenwood, D.T., 1994.

Geometric elimination of constraint

violations in numerical simulation of

Lagrangian equations. J. Mech. Des., 116,

1058–1064.

