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Abstract 

Numerical integration algorithm based on 

mathematical model in Lie-group setting for 

dynamic simulation of constrained mechanical 

systems is proposed in the paper.  Mathematical 

model is shaped as differential-algebraic system 

of equations (DAE) of index 1, while system 

configuration space is modelled as Lie-group 

consisting of elements translational linear 

spaces and SO(3) rotation groups. The basis of 

the method is Munthe-Kaas algorithm for ODE 

on Lie-groups, which is re-formulated and 

expanded to be applicable for the integration of 

constrained multibody dynamics in DAE-index-

1 form. The constraint violation stabilization 

algorithm at the generalized position and 

velocity level is introduced by using two 

different algorithms: a first one that operates 

directly on the ‘state-space’ manifold and, a 

second one, that uses Cartesian rotation vectors 

as local coordinates for the generalized 

positions. A numerical example that 

demonstrates the proposed integration 

procedure is described and discussed at the end 

of the paper. 

1. Introduction 

A mathematical and numerical modeling of 

large 3D rotations and computational treatment 

of kinematical constraints are central problems 

in domain of multibody dynamics. Unlike 

problems that belong to the ‘classical’ structural 

dynamics that were focused primarily on the 

small displacements leading to linear problems, 

multibody dynamical models had to deal with 

kinematical constraints, large rotations and 

geometrical non-linearities from the very 

beginning of this discipline of the 

computational  mechanics (Schiehlen, 1997). 

In order to treat geometrical non-linearities 

in numerically stable and efficient manner, 

design of the numerical integration methods 

that operate on manifolds and Lie-groups 

(instead of linear vector spaces) offer some 

attractive features such as numerical robustness 

and avoidance of the kinematical singularities 

as well as numerical efficiency of the code. 

However, working directly on non-linear 

manifolds assumes that integration algorithm is 

designed appropriately, since vector-space 

based mathematical operation, which are basis 

of the almost all standard integration 

ODE/DAE routines (such as methods based on 

Runge-Kutta schemes, Adams-Moulton, 

Newmark, Generalized - α method, BDF 

algorithm etc.), are no longer valid. 

Along this line, the goal of the paper is to 

propose mathematical model and numerical 

integration algorithm based on Munthe-Kaas 

Lie-group integration scheme (Munthe-Kaas, 

1998) that will be pertinent to multibody 

dynamics application cases. The state space of 

multibody system is modeled as a manifold 

(Lie-group) and mathematical model of the 

numerical scheme is shaped as DAE of index 1. 

The method is primarily focused on dynamics 

of rigid body multibody systems, although its 

application can be easily extended also on the 

systems that possess elastic components. 

2. Geometric DAE integration procedure 

for MBS 

2.1 Lie-group ODE integrator 

The configuration of a rotating rigid body is 

given by a rotation matrix R  that belongs to 

Special Orthogonal Group SO(3):  

 1det,:)3( 3x3  RRRR I
TSO R . (1) 
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From the geometrical point of view, SO(3) can 

be considered as a differential manifold (space 

with different possibilities of parametarizations 

on which we can do calculus). Tangent vectors 

R  to SO(3) at point )3(SOR  of the manifold 

belong to the tangent space )3(SOTR , 

)3(SOTRR . Moreover, SO(3) has the 

properties of Lie-group, where the tangent 

space at the group identity I has an additional 

structure. This vector space is equipped with 

matrix commutator and constitutes Lie-algebra 

of SO(3), the set of skew-symmetric matrices 

denoted by so(3). The element of Lie-algebra 

soω
~

 can be identified with 3R  via 

mapping operator which maps a vector 3Rω  

to a matrix soω
~

. Between the elements of 

the group )3(SOR  and Lie-algebra 

soω
~

 exists natural correspondence via 

exponential map (Iserles, Munthe-Kaas, Norsett 

and Zanna, 2000; Hairer, Lubich and Wanner, 

2006; Müller, 2005) and the expression 

)
~

exp()( ωR tt   is solution of the inital value 

problem 

ωRR
~

)()( tt  , I)0(R .   (2) 

Also, the Lie-algebra element ω~  defines left-

invariant vector field 
ω

X~  on SO(3) via relation 

)
~

()(~ ωRX Rω
L , )3()(~ SOTRω

RX  , where the 

tangent map )3()3(:)
~

( TSOTSOL  ωR  is     

given as ωRωR

~
)

~
( L  defining left kinematic 

Poisson relation ωRR
~

 . Equivalently, instead 

of using body coordinates ω
~

, the right Poisson 

equation can be formulated as RωR S

~
  by 

using angular velocity expressed via spatial 

coordinates Sω
~

 (Müller, 2010). As explained 

above, left and right Poisson kinematic equation 

represent differential equation on SO(3), since 

)3(SOR  and the angular velocity tensor (ω
~

 

or Sω
~

) belongs to Lie-algebra so(3). In the case 

when angular velocity is not a constant skew-

symmetric matrix (as it is the case in the 

equation (2), which has solution 

)
~

exp()( ωR tt  ), body kinematics that evolves 

on SO(3) is to be computed numerically. In the 

general setting, the objective is to find solution 

of differential equation on a matrix Lie-group 

G, with Lie-algebra g, in the form        

)())(()( tYtYAtY  , (3) 

where GY )0(  and gYA )(  for all GY   

and right trivialization is used. The equation (3) 

can be numerically solved by using different 

geometric integration methods (Iserles, 

Munthe-Kaas, Norsett and Zanna, 2000; Hairer, 

Lubich and Wanner, 2006), such as Munthe-

Kaas algorithm (Hairer, Lubich and Wanner, 

2006; Munthe-Kaas, 1998) that assumes result 

in the form 

0))(exp()( YtutY  , (4) 

where )(tu  is the solution of 

)))(((exp 1 tYAdu u
 , 0)0( u . (5) 

By following this route, the numerical 

solution of kinematic equation (3) can be 

incorporated into the computational procedures 

based on Newton-Euler formulation, where 

rotational dynamics of rigid body is studied 

directly on SO(3). This leads to more efficient 

procedures since no local parametarisation of 

3D rotation is needed. 

2.2 Lie-group DAE integration 

procedure 

2.2.1 Procedure framework 

The configuration space of MBS is modeled 

as )3(...)3(... 33 SOSOG  RR , which 

is a n-dimensional manifold with Lie-group 

properties, consisting of translational and 

rotational kinematical domains of each rigid 

body in MBS. The Lie-group composition 

operation GGG   is introduced by 

21 pppcom  , where Gppp com  , , 21  and the 

identity element e of the group is defined as 

Gpppeep   , . The Lie-algebra 



GTeg  (vector space that is isomorphic to 

nR ) is defined as the tangent space GTp  at the 

identity p=e. The tangent vector in GTp  (at any 

point Gp ) can be represented in Lie-algebra 

g  via derivation pL  of the left translation map 

ypyGGLp  ,  :  .                               

Thus, for y=e, we can define bijection 

ΩΩ
~

)(
~

 , :)(  eLGTeL ppp g , where 

Ω
~

)(  eLp  is directional derivative of pL  at the 

point y=e in direction of gΩ
~

 (since G is Lie-

group, the element of Lie-algebra Ω
~

 defines 

left invariant vector field on G, similarly as it 

was the case with SO(3)). 

To incorporate kinematical constraints of 

MBS, the function mG R :Φ  are imposed on 

G, meaning that system is constrained to evolve 

on the n-m dimensional sub-manifold 

 0)( :  pGpS Φ . Consequently, dynamic 

equations of MBS are shaped in the form (Brüls 

and Cardona, 2010) 

0)() , ,()(  λCvQv ptpp TM  

0)( pΦ  

v
~

)(  eLp p
 , 

(6) 

where M  is nn  dimensional inertia matrix, 
nRv ,  Tkk ωωvvv  ,..., , ,..., 11  are system 

velocities (k bodies are assumed), Q  represents 

external and non-linear velocity forces, 
mRλ is the vector of Lagrangian multipliers 

and C  is nm  dimensional constraint gradient 

matrix, such that npp R ΩΩCΩΦ  ,)(
~

)(  

is valid. The equation (6) represents DAE 

system of index 3. Within the framework of the 

proposed integration procedure, the equation 

(6) will be re-shaped into the DAE of index 1 

form by including kinematical constraints at the 

acceleration level 0),,( vvΦ  p  (instead of 

0)( pΦ ) and integrated by the routine based 

on the Munthe-Kaas algorithm. 

To ensure that kinematical constraints are 

satisfied during integration, constraint violation 

of the system velocities nRv  and 

generalized positions Gp  will be corrected 

by using stabilization algorithm. 

2.2.2 Integration algorithm 

As introduced, the configuration space of 

MBS is modeled as Lie-group 

)3(...)3(... 33 SOSOG  RR  where 

translation and rotation of each rigid body is 

included in the n-dimensional configuration 

domain and element of the group is given as 

) ,..., , ,...,( 11 kkp RRxx . However, since 

proposed time integration routine operates 

‘simultaneously’ at the generalized positions 

and generalized velocities, a system has to be 

modeled on the 2n-dimensional Lie-group 

 333 ...)3(...)3(... RRR SOSOS  

TGsoso  )3(...)3(... 3R  (a system ‘state 

space’) with the  element 

)
~

 , ,...
~

 , ,..., , ,..., , ,...,( 1111 kkkkq ωωvvRRxx , (7) 

and its Lie-algebra 

 333 ...)3(...)3(... RRR sosos  

333 ...... RRR   with the element given as 

)
~

, ,...
~

 , ,...,,
~

 ,...,
~

 , ,...,( 1111 kkkkz ωωvvωωvv
 . (8) 

By confining ourselves on a single body system 

to keep formulation short, we introduce 

operations in Lie-group S  and its Lie-algebra 

s  as follows. 

Product in S : 

) , , ,(), , , () , , ,( hdgcfbeahgfedcba  . 

Addition in s : 

) , , ,(), , , () , , ,( ddccwwvvdcwvdcwv  . 

Multiplication by scalar in s : 

) , , ,() , , ,( dcwvdcwv   . 

Exponential map in s : 

) , ),exp( ,() , , ,exp( dcwvdcwv  . 

Bracket in  s : 

)0 ,0 , ,0()], , , (), , , ,[( wwdcwvdcwv  . 



Here, on the right hand side of definitions, ‘  ’ 
is the multiplication in SO(3), ‘+’ is addition in 

3R and so(3) and exp is exponential map on 

so(3). The operations in s  and S of multibody 

system, consisting of system of k bodies, is 

defined component-wise equivalently as for a 

single body system. 

With all Lie-group operations in place, a 

differential equation describing dynamics of 

MBS on Lie group S  can be written in the 

form 

qqFq )( ,  (9) 

where Sq  and sS  :F  is given 

by zqF   : , where elements q and z are given 

by (7) and (8). During evaluation of zqF   : , 

the variables 
T

kk 




 ωωvvv
 ~

, ,...
~

 , ,..., 11  are 

determined by the system dynamics equation 



























ξ

Q

λ

v

0C

C TM
,  (10) 

which has to be solved (linear algebraic system 

for variables  v and λ ) within integration 

algorithm of the differential equation (9). 

The equation (10) represents first two 

equations of system (6), shaped as DAE of 

index 1, where the acceleration kinematical 

constraints 0),,( vvΦ  p  are introduced as 

ξvC   (Terze and Naudet, 2008). 

The differential equation (9) of the system 

dynamics on S  has the same form as 

differential equation (3) and can be solved by 

using Munthe-Kaas (MK) type of integration 

algorithm (Munthe-Kaas, 1998). Similarly as it 

was the case with (3), (9) can be solved by 

introducing local integration coordinate u in s  

that satisfy 

))((exp 1 qFdu u
 , 0)0( u .  (11) 

Within MK method, (9) is integrated in s  and 

numerical solution is than reconstructed on S  

via exponential mapping. The algorithm itself 

can be given in the form (Munthe-Kaas, 1998) 

si

qq w

, . . . ,2 ,1 for

10



 
 

     

) , ,dexpinv(
~

)) ,exp( ,(

~
 

0

1

1

nkuk

quhcFk

kahu

iii

iii

i

j jiji





 




 

 


s

j jjkbhv
1

~
 

end
 

) ,exp( 0qvqw   

where the coefficients are given by the classical 

s-stage nth order Runge-Kutta method's Butcher 

table (Munthe-Kaas, 1998) and function 

dexpinv is defined as follows (Iserles, Munthe-

Kaas, Norsett and Zanna, 2000; Hairer, Lubich 

and Wanner, 2006; Munthe-Kaas, 1998) 

         ,, . . . , , 
!

 ,
2

1
 ) , ,dexpinv(

1

2

kuuu
p

B
kuknku

p
n

p

p







 . 

The variables iii kku
~

,,  are MK method 

internal integration variables (Munthe-Kaas, 

1998; Celledoni and Owren, 2003) (similar as 

those that are defined within the framework of 

RK algorithms - MK methods reduce to RK 

algorithms when operate in vector space), 

which have the same format as z given by (8), 

see also (11). 

2.3 Constraint violation stabilization 

procedure  

A numerical solution obtained by the 

described algorithm will satisfy constraint 

equation at the acceleration level 0),,( vvΦ  p  

automatically, since this equation is directly 

incorporated in the function evaluation 

sS  :F  via formulation (10). However, the 

constraint equations for the generalized 

positions 0)( pΦ  and velocities 0),( vΦ p  

(which can be also written in the form 



ξvC )(p  (Terze and Naudet, 2008)) that are 

also part of DAE formulation (6), will be 

unavoidably violated during the straightforward 

integration based on the MK type of algorithm 

(Terze and Naudet, 2010). 

For the purpose of constraint stabilization 

procedure that operates directly on S , we 

propose a projective method that is based on 

nonlinear constrained least square problem 

given in the form 

 

2

ˆ

ˆ
min

w
v, vv 


















kk

kk

p

pp

kk

, 0)( pΦ , 

I
T

iiRR , 0),( vΦ p , 

(12) 

(where 
w

 denotes the weighted norm). The 

projected variables have to satisfy constraint 

equations 0)( pΦ , I
T

iiRR  and  

0),( vΦ p  to obtain stabilized values kk ,p v , 

as expressed in, while kkp v̂,ˆ  are ‘un-

stabilized’ values that are obtained from the 

integrator for the current integration step.  It 

should be emphasized here that described 

constraint stabilization at the velocity level (that 

brings stabilized value kv from the initial 

integration value kv̂ ) is a ‘linear’ one-step 

projective process, while ‘generalized position’ 

kp stabilization requires iterative procedure. 

In the sequel, a linear procedure also for 

‘position’ variables, based on Cartesian rotation 

vectors (Cardona and Geradin, 1988) that are 

related with )3(SOi R by the equation 

)
~

exp(...
~

2

1~
1

2

iiii ΨΨΨR  , (13) 

will be introduced. Along this line, to design 

non-iterative constraint stabilization procedure 

for the variables ) ,..., , ,...,( 11 kkp RRxx , we 

note that stabilized constraint equation at the 

generalized position level should read 

0)( pΦ ,  (14) 

but, because of the numerical errors, current 

integration values of p
 

do not satisfy (14) 

completely, yielding 

0)ˆ( pΦ ,  (15) 

where p̂  
are ‘un-stabilized’ values that are 

results of the current integration step. To 

calculate ‘final’ (stabilized) values of p that 

satisfy (14) for the current step, we write  

,ˆ ,...,ˆ( 11 kkp xxxx 
 

))
~

exp(ˆ),...,
~

exp(ˆ
1 ik ΘRΘR 1   

 

(16) 

where ii Θx
~

,
 
are correction values that have 

to be introduced to bring p̂ in accordance with 

(14). In (16), ix
 

is a ‘standard’ vector 

correction of the linear displacement (body 

position), while iΘ
~


 

is Lie-algebra vector 

component representation (expressed in skew-

symmetric matrix/tensor form pertinent to so(3) 

by using body-fixed coordinate system) of a 

small rotation correction vector 
iRΘ  needed 

to adjust orientation of the body i to be in 

accordance with the (14).  Furthermore, by 

following (Cardona and Geradin, 1988), the 

variations 
iRΘ and iΨ  are related by  

iiT
i

ΨΨΘR  )( ,  (17) 

where )( iT Ψ
 
is a tangent operator that relates    

tangent spaces )3(SOTI  and )3(SOT
iR , see 

(Makinen, 2001; Cardona and Geradin, 1988) 

for the details. 

To proceed with the design of the non-

iterative ‘position’ constraint stabilization 

procedure, we will adopt the algorithm 

proposed in (Yoon, Howe and Greenwood, 

1994) and adjust it to be valid within the 

manifold S  computational framework. Since 

‘original’ constraint equation (14) is not 

satisfied due to the integration numerical errors, 

it is proposed in (Yoon, Howe and Greenwood, 

1994)  to expand (14) by adding variation 

correction term as 



0ˆ  ΦΦ  .  (18) 

The equation (18) is then used as a basic 

equation for calculation of the necessary 

increments of the system coordinates by 

linearising Φ  and keeping only first variation 

of the coordinates into consideration. However, 

in the case of calculation on S  via variables p, 

we can not proceed with equation (18) directly 

since S  is a manifold (a non-linear space) and 

addition that would combine evaluation of the 

function Φ  at the different points on the 

manifold is not a defined operation. 

Therefore, we will adopt vectorial 

representation of the rotations by using iΨ  

instead of )3(SOi R  and, by noticing that we 

can write  q̂)ˆ( ΦΦ p , the equation (18) can 

be written in the ‘local’ vectorial form 

0)/()ˆ( 









Ψ

x
ΦΦ




qp , (19) 

where we adopted local system coordinates as 

 Ψxq . By solving equation (19) for the 

variations Ψx  , , after assuming that correction 

increments are small enough that can be 

substituted by the first variations i.e. 

ΨΨxx   , , we are able to find 

correction terms that via relation qqq  ˆ  i.e.  
































Ψ

x

Ψ

x

Ψ

x

ˆ

ˆ
,  (20) 

bring unstabilized values q̂  into the stabilized 

variable q that satisfy ‘position’ constraint 

equation   0qΦ  
for the current integration 

step. 

However, the equation (19) is undetermined 

and, to make it solvable, we will assume that 

correction terms Ψx  ,
 
are completelly ‘sunk’ 

into the constrained subspace that are spanned 

by  the rows of the constraint matrix 
T)/( qΦ . Thus, we can write 

εqq
T)/(  Φ ,  (21) 

where vector mRε of the q  
projection 

values onto the T)/( qΦ constrained subspace 

has to be determined.  By substituting (21) into 

(19), we can write 

  )ˆ()/)(/(
1

p
-T
ΦΦΦ qqε  , (22) 

where mmT  R)/)(/( qq ΦΦ is invertible 

under assumption that system constraints are 

independent and T)/( qΦ has full row rank. 

By substituting (22) back to (21), we obtain 

final equation for determination of the needed 

correction values in the form (Yoon, Howe and 

Greenwood, 1994)   

 

.

)ˆ()/)(/()/(
1













Ψ

x

ΦΦΦΦ





 p
-TT qqqq

 (23) 

Once we determine stabilization correction 

terms Ψx  ,
 
from (23), a position correction 

for the linear displacement x
 
has a final value 

for the step (variable x is also a ‘global’ 

coordinate of the manifold S ), while the final 

corrected value of the )3(SOi R  should be 

calculated on the basis of Ψ  via relation  

)
~~

ˆexp()
~

exp(ˆ
iiiii ΨΨΘRR  . (24) 

It shold be emphasised that the proposed 

stabilization algorithm is straightforward and 

non-iterative, but it should be undertaken 

frequently during the integration process since 

the small correction values that can be 

substituted by the first variations are assumed. 

3. Numerical Example 

As an example of the case with large 3D 

rotations domain, a dual-spin satellite (also 

known as a gyrostat) is considered. The satellite 

is illustrated in Figure 1. It is composed of two 

rigid body connected by a revolute joint. There 

is usually large section, called the rotor (A) who 

contains satellite housekeeping equipment 

(solar arrays, main control computer and etc.) 

and platform (B) which usually contains the 

actual communications repeaters. The 



considered satellite is based on the model of the 

dual-spin satellite GOES-7. The mass and 

inertia tensor of the rotor are 300kg and 
2

A m kg )150,175,175(diagJ . The platform's 

mass and inertia tensor yield 100kg and 
2

B m kg )50,75.43,75.43(diagJ  
respectively. 

The reference points and initial conditions      

are  T000A X ,  T75.100B X , 

IR A , IR B ,   rad/s100A0

T
ω

 
and 

  rad/s1.000B0

T
ω . Furhermore, a constant 

torque   Nm0200100A

Ta M  is applied to the 

rotor. 

A matematical model for the dynamic 

simulation of satellite is shaped as a 

differential-algebraic system (DAE) of index 1. 

Translational and rotational parts of system 

dynamical equations are given in the standard 

form 

13AAA  0Cv
ifTm  , (25) 

13BBB  0Cv
ifTm  ,

 
(26) 

aifT
AAAAAAAA

~~
MRXωJωωJ   ,

 
(27) 

13BBBBBBB

~~
 0RXωJωωJ

ifT ,
 

(28) 

where Ax  and Bx  are the rotor and platform 

mass center positions, Aω  and Bω  represents 

rotor and platform angular velocities, Am , Bm , 

AJ  and BJ  are rotor and platform masses and 

tensors of inertia, if  stands for joint reaction 

force, AC
 

and BC  are rotor and platform 

constraint matrices, AX
 
and BX  are rotor and 

platform mass centers in the local coordinate 

system fixed to the bodys,  and AR
 
and BR  are 

rotation matrices that relates body coordinate 

system to inertial coordinate system. 

Mechanical  system  constraints  at  position,  

velocity  and  acceleration  level  that  represent 

joint between rotor and platform are given as 

 

13BBBAAA  0XRxXRx ,
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where  A3A2A1  , , EEE  and  B3B2B1  , , EEE  are 

two triads of orthogonal unit vectors fixed to 

the rotor and platform. The system constraint 

matrix is shaped in the form 
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which allows for assembling equations of  system dynamics in DAE of index 1 form 
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(34) 

In equation (34), the multiplier 
if  is 

interpreted as joint reaction forces, whereas it
1  

and it
2  are interpreted as joint reaction torques

in the revolute joint along axis A1E  and A2E . 

The equation (34) is shaped as DAE of index 1 

and integrated by the routine based on 4rd order 

explicit Munthe-Kaas algorithm. The results of 

numerical integration are given by the   Figures 

2 – 6. 

Mathematical model is implemented in the 

MATLAB programming environment, while 

ADAMS package has been used only for post-

processing based on the off-line calculation via 

described matematical model. The spatial 

trajectories of rotor and platform mass centres 

are given in Figure 2. The results shown in 

Figure 3 and 4 present components of the 

position of rotor and platform mass centres and 

angular velocitys. 

 
 

Figure 1. Sequence of the motion animation (post-

processed via ADAMS). 



 

Figure 2. Spatial trajectories of rotor and platform 

mass centres. 

 

 

Figure 3. Rotor and platform angular velocities. 

 

 

Figure 4. Rotor and platform mass center positions. 

 

 

 

 
Figure 5. Elements of rotation matrix 

AR  (indicated  

by indices). 

 

 
Figure 6. Elements of rotation matrix  

BR   (indicated  

by indices). 

 

Proposed integration algorithm operates 

directly on the Lie-group of the system state 

space, avoiding kinematical singularities that 

are always present within the vector space 

formulations of the large 3D rotation domain, 

such as one presented here. By overviewing 

Figures 2–6 which are showing integral curves 

of the system position, angular velocity and 

elements of rotation matrices )3( A SOR
 
and 

)3(B SOR , it is visible that all obtained results 

are smooth functions without any 

discontinuities. 

4. Conclusions 

The Lie-group integration method for 

constrained discrete mechanical systems is 

proposed in the paper. The method operates on 

Lie-group of system configuration space that is 



modeled as ‘state space formulation’. The 

system constraints are introduced in the 

mathematical model via DAE of index 1 

formulation. 

In order to stabilize constraint violation 

during integration procedure, two constraint 

stabilization algorithms are described: a 

constraint violation minimization by using 

constraint manifold projection methods based 

on solving nonlinear constrained least square 

problem (the algorithm is based on global 

system coordinates and operates directly on the 

system state-space manifold) and projections 

along the constraint gradients by using (local) 

Cartesian vector rotation parameterization. 

Since integration algorithm operates directly 

with angular velocities and rotational SO(3) 

matrices, meaning that no local (generalized) 

coordinates are introduced, the method 

circumvent problems of kinematic singularities 

of rigid body three-parameters rotation basis, 

re-parameterization of system kinematics 

during integration as well as numerical non-

efficiency of the kinematic differential 

equations. 

Within the presented example, method 

showed numerical robustness. It is easy-

applicable on general class of discrete 

mechanical systems with the kinematical 

constraints and large three-dimensional rotation 

fields of the system elements. 
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