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ABSTRACT

Recently various numerical integration schemes have been p
posed for numerically simulating the dynamics of consgedin
multibody systems (MBS) operating. These integrationreeke
operate directly on the MBS configuration space considessal a
Lie group. For discrete spatial mechanical systems theestan

Lie group that can be used as configuration space:($End
SO(3) x R3. Since the performance of the numerical integration
scheme clearly depends on the underlying configurationespac
it is important to analyze the effect of using either variafor
constrained MBS a crucial aspect is the constraint satisfac

In this paper the constraint violation observed for the tvemiv
ants are investigated. It is concluded that the(SEformulation
outperforms the S(B) x R3 formulation if the absolute motions
of the rigid bodies, as part of a constrained MBS, belong to a
motion subgroup. In all other cases both formulations areieq
alent. In the latter cases the $8) x R® formulation should be
used since the SB) formulation is numerically more complex,
however.

Keywords—Constrained multibody systems, Lie group integra-
tion, screw systems

1 Introduction

Lie group integration schemes for MBS commonly rest on
SO(3) x R? as configuration space manifold. This configura-
tion space cannot capture the intrinsic geometry of rigidybo
motions since it does not represent proper screw motionseMo
over the general motion of a rigid body is a screw motion. This
applies to unconstrained as well as constrained rigid Isodied
the reconstruction of finite motions within numerical times
ping schemes shall take this into account. Along this lire th
Lie group SE(3) of proper rigid body motions was recently
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used as configuration space [3], [4], [14]. It turned out that
proper rigid body motion group does outperform the standarc
SO(3) x R formulation for a rigid bodies constrained to move
relative to a stationary reference (e.g. heavy top), Theooisv
guestion is whether this statement applies to general zinst
MBS, and whether there is an optimal choice for a given MBS
that leads to the best numerical performance. In this paper t
Lie group formulations for constrained MBS are compared anc
the effect of using either configuration space is analyzedduo-
eral examples.

In Lie group setting the dynamics of a constrained multibody
system (MBS) is governed by the constrained Boltzmann-Hame
equations

M(q)V+JI"A =Q(q,V,t) (1a)
q=qVv (1b)
g(aq) =0 (1c)

whereq € G represents the MBS configuration aBds the con-
figuration space Lie group. Thisis an index 3 DAE system on the
Lie groupG. The system (2a) represents the motion equations @
the MBS subjected to the geometric constraints (2¢) that@re
plemented by th&inematic reconstruction equatiolidb). That

is, integration of (2b) yields the motia(t) of the MBS corre-
sponding to the MBS velocity € g, with g being the Lie algebra
of G. In order to apply Lie group ODE integration schemes the
first step is the reformulation of (2) as ODE on the state spac
S:= G x g. Thisis achieved with the widely used index 1 formu-

(5%)()-()
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using the acceleration constraidt&y) -V = n (q,V). This sys-

which admits representing the group multiplication as matr

tem replaces the dynamic equations (2a) when subject to the multiplication

holonomic constraints (2c) since, for a given stéte (q,V) € S,

the system (2) and thus (2) can be solved\otonsistent with
the acceleration constraints. The index reduction is aeli®n
the expense of numerical drifts of the constraints, howgljer
The overal ODE system is obtained by complimenting (2) with
the kinematic equations (2b).

As far as the MBS model is concerned the numerical perfor-
mance, and eventually the accuracy of any integration sehem
whatsoever, are determined by 1) the choice of generalized c
dinates and 2) by how generalized velocities are introdutkd
first issue has to do with finding a proper chart on the configura
tion space, whereas the latter concerns the relation otitiels
and time derivatives of the configurations, i.e. the refaf@b).
The best solution for the first issue is to avoid local cocatis

at all. The Lie group concept provides such a geometric Wehic
that allows for coordinate-free modeling of frame transfar
tions, where eitheBO(3) x R or SE(3) can be used. The sec-
ond issue concerns the particular configuration space loegyr
noting thatg € G andV € g.

The integration method considered in this paper is the Mamth
Kaas method. Since the kinematic reconstruction is inHegen
the model the considerations shall apply to Lie group irgggn
schemes in general.

2 Two State Spaces for Rigid Bodies

The configuration of a rigid body, with respect to a spacedfixe
inertial reference frame, is described by the position wmect

RR3 of the origin of a body-fixed reference frame and its rotation
matrix R € SO(3), summarized by the pa = (R,r). A rigid
body motion is thus a curv@(t). The crucial point is to assign
the Lie groupC is living in. The state space is then the product
of this Lie group and its Lie algebra.

2.1 Group of Proper Rigid Body Motions  SE(3)

SE(3) represents frame transformations, i.e. the combination
of two successive rigid-body comfigurations are giveny

C1 = (R2R1,r2+ Rar1). This multiplication rule indicates that
SE(3) := SO(3) x R3 is the 6-dimensional semidirect product
group of the rotation grougO(3) and the translation group, rep-
resented a®&3. Rigid body configurations can be represented in
matrix form as

3)
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A generic motion of a rigid body is a screw motion, i.e. antinte
connected rotation and translation along a screw axis [2].

The velocity corresponding to the screw motion of a rigid ypod
is a twistV = (w,v) € R8 with angular velocityw and linear
velocity vectorv. The body-fixed twisbf a rigid body motion
C(t) is determined as

WV

V:=CC with V= (O O> € se(3) (5)

wherese(3) is the Lie algebra o8E(3). The assignment (5) is
a one-one correpsondance of twist coordinate vectorse(®j-
matrices.@ := RTR € so(3) is the skew symmetric cross prod-
uct matrix associated to the vectwr Via this isomorphism the
Lie bracket orse(3), in vector representation, is given the screw
productV1, V2] = (w1 X w2, w1 X V2 — wy X V1) [2]. For conve-
niencew < so(3) is written for a vectow € R3 to indicate that
isomorphism o60(3) andR? equipped with the cross product as
Lie bracket.

For any screwX = (w,Vv) € R with screw axis parallel to the
linear part can be expressed with a position vectam the screw
axis asv =r x w+ hw. The screwX describes an instantaneous
screw motion, i.e. a rotation about the axistogether with a
translation along this axis, whehe= w-v/||w|| is the pitch of
the screw. Ith = 0, thenX are simply the Pliicker coordinates of
a line parallel to the screw axis.

The Lie bracket can be expressed by a linear operation owscre
coordinate vectors g¥1, V3| = ady, V> given by the matrix

(6)

The connection between an infinitesimal screw mo¥di) and
the correponding finite screw motion is given by the expoiaént
mapping orSE(3), which reads explicitly

- expw (I —exp®) (wxV)+hw
X:(w,v)»—>epr:< :)) ( P )i )

(7)

where

sin||w|| .
)

1—cos||w|| ~
H Hw2
HwH

expw = + X

(8)
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is the exponential mapping 0BO(3). Important for the Lie
group integration scheme is the differential of the expaiatn
mapping, dexp se(3) x se(3) — se(3) that can be introduced
as dexgpA( = CC1, with C = expX. Its signinifcance becomes
clear by replacingl with —X, which allows expressing the body-
fixed twist asV = dexp ¢X. The numerical ODE integration
methods require the inverse of the dexp map. In vector repres
tation of twists the inverse of dexp @E(3) is [13]

1 2
dexpl =1 ——adx+<
T2 o[

1 ||+ sin||w
+<||00|4+ ] +sinlje] )ad§‘( ©)

4||w|* (cos| ] - 1)
with X = (w, V). In vector representation ef(3) the inverse of
the differential of the exp mapping (8) f& = expé is given as
matrix [6]

@] +3sinjw] ) 2
4] @] (cosfw] — 1)

~2
_ 1+ NEN €N €

dexpl=1-2 +(1—— t—)—. 10
R =730 2 %2 )jep 49

The state of a single unconstrained rigid body is represdnye
the couplgC, V) € SE(3) x se(3). The acceleration of the body
is the time derivativé/ € R®. Making use of (5) the time deriva-
tive of C can be identified witlv. The time derivative of the rigid
body stategC, V) is thus isomorphic t¢V,V) € se(3) x RS,

Consequently, ir5E(3) representation, the state space of a rigid

body is the Lie grouBE(3) x R® with Lie algebrase(3) x RS,
The multiplication on this rigid body state space is

(Cl,Vl) . (Cz,Vz) = (Clcz,Vj_Jer). (11)

Being a Lie group the state space possesses an exponeryial ma

ping given by

exp: se(3) x R® — SE(3) xR® (12)
(V,A) — (expV,A)

with the exponential (7). The rigid body state can thus bemec

structed from its time derivative via this exponential miagp

With the Lie bracket on the algebsa(3) x R®

[(V1,A1), (V2,Az)] = (IV1,V2].0) (13)
the differential of the exponential mapping is
der\A,l’Al)(\A/z,Az) - (dexg71\72,A2). (14)
3

2.2 Direct Product Group SO(3) x R3
Neglecting the interrelation of rotations and translagitme mul-
tiplication is

C1-Co=(R1R2,r1+r2) (15)

which indicates tha€ = (R,r) € SO(3) x R®. The direct prod-
uct SO(3) x R® is commonly used as rigid body configuration
space for Lie group methods [3,4,7,9, 14]. Apparently thig-m
tiplication does not represent frame transformations. ilmerse
elementiC™t = (RT,—r).

The Lie algebra of the direct produsO(3) x R? is so(3) x R®
with Lie bracket

[X1,X2] = (w1 X @p,0). (16)

The exponential mapping on the direct product group is

X = (w,Vv) — expX = (expw,V) 17)

with the exponential mapping (8) &0(3). The dexp mapping
is accordingly

dexgau) (n,v) = (dexp:n,v), (18)

with dexp mapping onSQO(3).
dexg}lw (n,v) = (dexg'n,v).

The velocity of a rigid body is, with configuratidd € SO(3) x
RR3, given as

Its inverse is readily

(@,v%) = (RTR,i) :=C'C € s0(3) x R® (19)

and in vector notation denoteéd = (w,vS) € R3 x R3, with
vS = . This velocity couple is clearly not a proper twist but con-
tains a mix of body-fixed angular velocity and spatial linear
velocity vS. It is therefore calledhybrid representatiomf rigid
body velocities [5], [12]. It is frequently used for exprigsthe
Newton-Euler equations. Even though, angular and lineacve
ities are treated independently, and this definition do¢saflect
the intrinsic characteristics of screw motions.

In hybrid representation the state of a rigid body is represg
by (C,V) € SO(3) x R® x s0(3) x R3. This is a Lie group with
algebraso(3) x R® x R®. Multiplication is defined as

(C1,V1) - (Cp,V2) = (C1-Co,V1+V2), (20)
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and the exponential mapping is, with (17),

exp: so(3) x R¥xRE — SO(3) x R x R3 x R3

VLA o (expV,A). (1)
The Lie bracket is on this algebra is
[(VlvAl)a (VZ,AZ)] = ([V17V2]ao>' (22)

The differential of the exponential mapping is, with (18emn
by

deXRVLAl)(VZvAZ) = (deXR/1V2,A2). (23)

3 State Space of MBS

3.1 Group of Proper Rigid Body Motions  SE(3)

The configuration of an MBS consisting ofigid bodies is rep-

resented by = (Cy,...,Cp) € G*, where
G* := SE(3)" (24)

is the é-dimensional configuration space Lie group. This is

a coordinate-free representation of MBS configurations.e Th

multiplication onG* is understood componentwise, and thus

g t=(ct....CyY). The MBS velocities are represented by

V= (Vy,...,Vn) € (RG)”. The body-fixed velocities are deter-

mined byV = q~1¢ denotingV = (V4,...,V,). The MBS state

space is thus the 12-dimensional Lie group

n
S := SE(3)"x (RG) (25)
and the MBS state iX = (q,V) = (Cy,...,Cn,V1,...,Vn) €
Sx. The  multiplication is X' - X”
(CICY,....C.Ch, V1 +VT,... .,V + V).
The corresponding Lie algebra is
n

s = se(3)" x (RG) : (26)
with x = (V1,...,Vn,Aq,...,An) € s*.
ping on the state space is

The exponential map-

expx = (expVy,...,expVn,A1,...,Ay) € S (27)
with (12) with differential dexp 5™ x s* — s*
dexge X’ = (dexp, V1,....dexp, Vq,A7,...,An).  (28)
4

3.2 Direct Product Group SO(3) x R3
When the direct product group is used the MBS configuratior
g=(Cy,...,Cy) € G* belongs to the B-dimensional Lie group

G* = (SO(3) x R%)" (29)

and possess the inverge! = (C;%,...,C;1). The hybrid veloc-
ity of the MBS isq 14 = ((@1,V}), ..., (@n,V3)), and written as
vectorV = (V1,...,Vy) € (R®)" with Vi = (w;,V¥). Therewith
the MBS state space is

S = (SO(3) x R%)" x (Rﬁ)n (30)

with state vectorX = (q,V) = (Cy,...,Cqy,V4q,...,Vn) € S~
This is a 12 n-dimensional Lie group with multiplicatioX’ -
X" = (C;-Cy,...,Ch-Cn, Vi + VY, ... VL 4+ VI). The Lie alge-
bra of S€ is

5" = (s0(3) x R%)" x (Re)n, (31)

with elementsx = (V1,...,Vn,A1,...,Ap) € s where Aj =
(ai, &) represents the body-fixed angular and spatial linear ac
celeration. The exponential mapping on the ambient stateesp
is

expx = (expVi,...,expVn,Ag,...,Ay) € S* (32)

with (17). The differential dexps™ x s* — s* is, with (18),

dexpx’ = (dexp; V1,...,dexp, Vi, Ag,...,An).  (33)

4 Munthe-Kaas Method for Constrained MBS

The Munthe-Kaas (MK) method [8, 10, 11] is a widely used in-
tegration scheme for ODE on Lie group that was applied tarigi
body dynamics such as [7]. Its appeal stems from its cor#bruc
since itis a direct extension of the Runge-Kutta method réteo

to apply MK a scheme the system equations must be express
in the form of a first-order ODE on the state space

X = XF(t,X) (34)

with a mappingF : R x S— s. This is achieved with help of
the index 1 system (2). In order to solve f&; at a given
stateX = (q,V) € S, the system (2) must be solved fdr It

remains to evaluate (2b) fay. “ By introducing the mapping

Copyright © 2013 by ASME



F (t,X) = (V,V), which includes solving fo¥, the system (2) is
equivalent to (34) sinc¥F (t,X) = (qV,V). The equations (34)

aluminium material the body massris= 21.6 kg, and its iner-
tia tensor w.r.t. the RFR i® = diag (0.36,0.306,0.09) kg n?.

can be regarded as the Boltzmann-Hamel equations on tlee stat The position vector of the COM measured from the pivot point

space Lie group when its algebra is defined by left trividicra
Evaluation ofXF (t,X) thus amounts to solving (2) for and
evaluating (2b). Since both, the rigid body twists (5) ared tlg-
brid velocities (19) are defined by left translation this lagmpto
the SE(3) and theSO(3) x R? formulation as e.g. in [3, 4, 14].

In the MK method solutions are sought of the fodr(t) =
Xoexpd (t). This allows replacing the original system (34) at
the integration stepby the system

o) = dexp:;(i) F(t,X_1exp®) t € [ti_1,4], with ) (t;_1) =0

(35)
with initial condition X;_;. Notice the negative sign @b() in
dexp, which is different from the original MK version. Origi
nally the MK method is derived for right invariant systems, i
ODE systems of the fornX = F (t,X)X. Numerically solv-
ing (35) yields a solutiord® (t;), and thus a solutior; :=
Xi_1exp®l) () of (34). Thed) represent local coordinates on
the state space defined in a neighborhoo#of. The system
(35) is solved by as-stage RK method. This gives rise the cor-
responding-stage MK scheme at time step

Xi:: Xi_]_equ)(l)7 GJ('):h Z b]k] (36)
i=1
kj==dexpy, F (ti-1+cjh, X-1expW))
j—1
Wi:=h a'|k|,l-|J1=0,
J I; ]

wherea;, bj, andc;j are the Butcher coefficients of tisestage
RK method, and;, ¥; € s.

It is well-known that the index 1 formulation suffers fromrco
straint violations due to numerical drifts introduced b thu-

merical update scheme. This is indeed carries over to the in-

troduced Lie group formulation, and the established cairgtr
stabilization methods can be applied. The paper [1] prevale
good overview of constraint stabilization methods.

5 Examples
5.1 Heavy Top in Gravity Field

As first example a heavy top is considered, i.e. a single rigid

body constrained to rotate about a space-fixed pivot point.
The model concists of a rectangular solid box with side leagt

expressed in the body-fixed reference frame is denoted wit
ro = (0.5,0,0)m. The configuration of the reference frame is
represented b = (R, r%).

FIGURE 1. Model of a heavy top.

Motion Equations in Body-Fixed Representation The pivot
imposes the geometric constraints

g(C)=ro—R'rs=0. (37)

Time differentiation yields the velocity and acceleraticon-
straints

(/1) (&) =av=o (Ri1) () ——@wro+av
(38)
where the body-fixed twist is denot¥d= (w, V). These together

with the body-fixed Newton-Euler equations w.r.t. to the COM
give rise to the system (2)

O O 7/\0 W M — @Ooa)
Om | v | = F — mav (39)
To 1 O A —Wr g+ Wv

where (37) is assumed satisfieB.andM is the external force
and torque, respectively, acting on the COM representelan t
body-fixed frame.

Motion Equationsin Hybrid Velocity Representation In hy-
brid velocity representatioiw,v®) the geometric constraints
(37) gives rise to the following velocity and acceleratiame
straints, respectively,

0.1 x 0.2 x 0.4m connected to the ground by a speherical joint

as shown in figure 1a). A body-fixed reference frame (RFR) is
attached at the COM. In the shown reference configuration the
RFR is aligned to the space-fixed inertia frame (IFR). Assigmi

(R?o|)<\‘/*§)o, (R?ol)<$)R(T)E)ro. (40)

5 Copyright © 2013 by ASME



The Newton-Euler equations w.r.t. to COM in hybrid represen
tation yields

©y 0 (RT’\Q)T W M — a)eoa)
om | v | = Fs . (41)
R?o | 0 A RG)G)rO

F® is the external force acting on the COM represented in the

spatial frame.

Numerical Results No gravity or external forces and torques
are present, i.,e.M = F = 0. The integration step size is

At = 1073 s. In the reference configuration the top has the same

orientation as the inertial frame shown in figure 1a). Thédhi
angular velocity was set t@g = (0,2071,1077) rad/s so that the
top will perform a spatial rotation.

Figure 2 shows the deviation of the location of the COM refer-

ence frame for numerical solutions obtained with 8t&3) and
SO(3) x R? formulation, respectively. Th&E(3) integration
yields the correct result within the computation accurat¢ylev
the SO(3) x R® formulation shows significant drifts.

'!, Ll !\J"L\u!ﬂ") Ll h‘lh(l“ ML nJ MM

L """'"""’”W"”‘ W l"”l“‘”‘”"’l"lu "\ i

K am—"rT &M

] Gl il
:GURE 2. Drift lf rotati:n cent;r for in:egrt:tiori on zSEl:?;), and
b)SQ(3) x R3.

A reference trajectory was numerically determined by irdéeg
ing the dynamic Euler-equations in quaternion paramettaz
using a RK4 integration scheme with variable step size ahd re
ative and absolute accuracy goal of £@&nd 10°°, respectively.
Figure 3 shows the kinetic energy drift for integration ®E(3)
relative to the initial valudlp = 13.97 kJ. This is two orders of
magnitude smaller than the drift of t80(3) x R? formulation

(fig. 3b)).

AE[)]
6.x10°4 F

5.x1074 [
ax104 F
3.x10°4 F
2.x10°4 |

Lx1074F

a)

AE[]]

5.x10°3 F
4.x10°3 |
3.x1073 [
2.x 1073 |

Lx103 [

07\ I I I I |
b) 0 2 4 6y ® 10

FIGURE 3. Drift of kinetic energy for a)SE(3) and b)SQ(3) x R3
formulation.

5.2 Spherical Double Pendulum in Gravity Field

Joint 2

Body 1

FIGURE 4. Spherical double pendulum.

The double pendulum is considered consisting of two slende
rigid bodies as shown in figure 1b). The two bodies are interco
nected and the pendulum as a whole is connected to the grou!
by spherical joints. The two links are flat boxes with sideglten
a,b,c along the axes of the COM reference frame. Both have the
same dimension with lengttes= 0.2m,b = 0.1m,c = 0.05m.
The configuration of the system is represente@by= (R1,r)
andC; = (R2,r3). The two links are subject to the geometric
constraints

0 (C) =
92(C1,C) =

whererjg,i = 1,2 is the position vector from the COM frame on
bodyi to the spherical joint connecting the two links, expressec
in the COM framer g is the position vector from the COM frame
on body 1 to the spherical joint connecting it to the ground ex
pressed in this COM frame. Denote wiihy the inertia tensor of
bodyi w.r.t. the COM frame, and witln its mass.

R1r0+r§ =0

R1r10+r§—R2rzo—r§:0 (42)

Copyright © 2013 by ASME



M otion Equationsin Body-Fixed Representation The veloc-
ity and acceleration constraints corresponding to (42grims of
body-fixed twistsV1, V> € se(3), are

w1

/r\o —I 0 0 V1
= b . =JV 43
(erlo —R1 —Rar2o Rz w2 (43)

V2

- ®1vl+®16)1r0
JV = A PP ~ ~ 44
(lelwlflo— R2W202r 20+ R101vy — R2w2V2> )

Using a reference frame at the COM yields

O10 0 0 0 7?0 7?10R1— (301 —(T)lelowl
0 ml 0 0 —I 7R1— \71 Fi— mla)lvl
0 0 920 0 0 ,I’\zoR; d)z — 6)2920002
0 0 0 mpl O R;— V2 Fy— mza)2V2
To I 0 0 O 0 A1 *
Rl/r\lO —Rl —Rz/r\zo R2 0 0 Az *k
(45)

wherex andxx are the terms in the two rows of the right hand
side of (44). Since only gravity forces act on the systems the

body-fixed forces ar&; = R g%, whereg® = (0,0,—g) is the
gravity vector w.r.t. space-fixed frame. The Lagrange mlitr
Ai € R is the reaction force in joirit

Motion Equationsin Hybrid Velocity Representation With
hybrid velocitiesV; = (wi, v{) the velocity and acceleration con-
straints are

the SE(3) formulation. It also reveals that the constraint viola-
tion is more pronounced when it is due to the relative motibn o
two screw motions, which explains that the violation in jdiris
higher than that in joint 1. The total energy drift is compdea
for both formulations (figure 7).

Ar[m]

. / '\ny Al
Lx10-15 Ay N NVNW Nf\/\,\ /{U M\%

5.x10-16 //\\\Z\LNM 'L‘ '/UJ\ /\/‘\ NJ N\ ‘(U"HH‘M
) Lt VY f/fww A ﬁ\/ |, W
V

-5.x10716

-1.x10715

-1.5x10715

-2.x10715

Art"

8 10
U]

b)

FIGURE 5. Violation of geometric constraints of joint 1 when inte-
grating theSE(3) (a), andSQ(3) x R® (b) formulation.

w1
R]_/I’\o —I 0 O> Vi
0= . —~ =JV (46)
(lelo —I —Rarao | w2 2105 A
V2 ™ A2
. Ri101ro )
JV = A~ PPN . 47 5
(lelwlrlo—szzwzrzo) “7) R
The index 1 motion equations are, with force vectgis- ¢°, e
©,p O 0 0 —/r\oRI —/r\lORI (Jn)l —a)l@]_owl 10|
0 mil O 0o -l —I vi F
0 0 @20 0 0 ?ZOR; d)z — 6\)29200)2 0 L ) 3 1 5
0 0 0 ml O | VS = a) | s
Rifo —I 0 0 0 0 A1 * Lx10°3 |
Rj_?j_o —I 7R2?20 | 0 0 Az %k 8.x1074
The termst andxx in the two rows of the right hand side of (47). R Ar
4.x10°4 [
Numerical Results In the initial configurationCy (0) = S -
(1,(a1/2,0,0)), C2(0) = (I,(a1+@a2/2,0,0)) the pendulum is 50
aligned along the space-fixed x-axis as shown in figure 1b). 10 | o
The initial velocities are set tang = (10,0,0) rad/s andwyg = - . : 2 T
(107,101, 20m) rad/s. The pendulum is moving in the gravity b) ) W

field. A time step size ot = 10 3s is used in the MK method

(36). Figure 5 and 6 reveal a generally better performance of

7

FIGURE 6. Violation of geometric constraints of joint 2 when inte-
grating a) theSE(3), and b)SQ(3) x R? formulation.
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o I
AE[J]
5.x1073
-1.x1072 |

-1.5x1073

-2.x1072 |,

o Fr
AE[J]
-5.x1073 F

S1x1072 L

-1.5x1073 [

-2.x 1072 I I I I I I I I
b) 0 2 4 6 8 10 12 14

FIGURE 7. Drift of total energy for a) th&E(3), and b)SQ(3) x RS.

5.3 Interconnected Floating Bodies

Consider the situation in figure 8 where the two bodies in the
above spherical double pendulum mutually connected butare
connected to the ground. That is, the two bodies, connegted b
one spherical joint, are free floating, and no gravity is el
The motion equations are the same as those of the spherical do
ble pendulum above except that the first constraint in (438),(
and (46),(47), respectively, are removed.

IFR
3
Body 2 1
2

FIGURE 8. Two floating bodies connected by spherical joint.

Joint 1

Body 1

Again the initial configuration is such that the bodies are ho
izontally alligned. The initial angular velocities awe;p =
(0,0,—10) rad/s andwyo = (1,—1,2m) rad/s.

The numerical results obtained by the Lie group integration
schemes are shown in figure 9. Apparently for this examplie bot
formulations perform similarly regarding constraint s&dttion.
Also the kinetic energy drifts are similar as shown in 10.

This example differs from the previous ones in that the caist
violation is caused by the spatial motion of two intercoriadc
bodies rather then by the motion of one body that is conndoted
the ground.
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FIGURE 9. Dirift of rotation center for integration on E(3), and

b) SQ3) x R3.
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FIGURE 10. Drift of kinetic energy for aSE(3) and b)SQ(3) x R3
formulation.

5.4 Closed Loop Spherical 3-Bar Linkage
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As final example the closed-loop three-bar mechanism indigur
11 is considered. Due to space limitations the motion eqoati
are not given here. The results in figure 12-14 confirm thainaga
that the constraints are perfectly satisfied if only the orotf
one body is to be estimated, i.e. the base joints. The camistra
violation of joint 2 connecting the two bodies is similar tooth
formulations. Also the energy drift of both formulationssisi-
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6 Discussion and Conclusion complete this study the effect of different configuratioaspfor
A generic rigid body motion is a screw motion, and the corre- other Lie group integration schemes will be investigatefuin
sponding velocity is a proper twist. Consequently the finit- ture.

tion of a body is best approximated from its instantaneoust tw

as finite screw motion. As the actual cause of the body twist
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