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ABSTRACT
Recently various numerical integration schemes have been pro-
posed for numerically simulating the dynamics of constrained
multibody systems (MBS) operating. These integration schemes
operate directly on the MBS configuration space considered as a
Lie group. For discrete spatial mechanical systems there are two
Lie group that can be used as configuration space: SE(3) and
SO(3)×R3. Since the performance of the numerical integration
scheme clearly depends on the underlying configuration space
it is important to analyze the effect of using either variant. For
constrained MBS a crucial aspect is the constraint satisfaction.
In this paper the constraint violation observed for the two vari-
ants are investigated. It is concluded that the SE(3) formulation
outperforms the SO(3)×R3 formulation if the absolute motions
of the rigid bodies, as part of a constrained MBS, belong to a
motion subgroup. In all other cases both formulations are equiv-
alent. In the latter cases the SO(3)×R3 formulation should be
used since the SE(3) formulation is numerically more complex,
however.
Keywords–Constrained multibody systems, Lie group integra-
tion, screw systems

1 Introduction
Lie group integration schemes for MBS commonly rest on
SO(3)×R3 as configuration space manifold. This configura-
tion space cannot capture the intrinsic geometry of rigid body
motions since it does not represent proper screw motions. More-
over the general motion of a rigid body is a screw motion. This
applies to unconstrained as well as constrained rigid bodies, and
the reconstruction of finite motions within numerical time step-
ping schemes shall take this into account. Along this line the
Lie group SE(3) of proper rigid body motions was recently

used as configuration space [3], [4], [14]. It turned out thatthe
proper rigid body motion group does outperform the standard
SO(3)×R3 formulation for a rigid bodies constrained to move
relative to a stationary reference (e.g. heavy top), The obvious
question is whether this statement applies to general constrained
MBS, and whether there is an optimal choice for a given MBS
that leads to the best numerical performance. In this paper two
Lie group formulations for constrained MBS are compared and
the effect of using either configuration space is analyzed for sev-
eral examples.
In Lie group setting the dynamics of a constrained multibody
system (MBS) is governed by the constrained Boltzmann-Hamel
equations

M(q)V̇+ JTλ = Q(q,V, t) (1a)

q̇ = qV (1b)

g(q) = 0 (1c)

whereq∈ G represents the MBS configuration andG is the con-
figuration space Lie group. This is an index 3 DAE system on the
Lie groupG. The system (2a) represents the motion equations of
the MBS subjected to the geometric constraints (2c) that arecom-
plemented by thekinematic reconstruction equations(2b). That
is, integration of (2b) yields the motionq(t) of the MBS corre-
sponding to the MBS velocityV∈ g, with g being the Lie algebra
of G. In order to apply Lie group ODE integration schemes the
first step is the reformulation of (2) as ODE on the state space
S:= G×g. This is achieved with the widely used index 1 formu-
lation

(
M JT

J 0

)(
V̇
λ

)
=

(
Q
η

)
(2)
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using the acceleration constraintsJ(q) · V̇ = η (q,V). This sys-
tem replaces the dynamic equations (2a) when subject to the
holonomic constraints (2c) since, for a given stateX =(q,V)∈S,
the system (2) and thus (2) can be solved forV̇ consistent with
the acceleration constraints. The index reduction is achieved on
the expense of numerical drifts of the constraints, however[1].
The overal ODE system is obtained by complimenting (2) with
the kinematic equations (2b).

As far as the MBS model is concerned the numerical perfor-
mance, and eventually the accuracy of any integration scheme
whatsoever, are determined by 1) the choice of generalized coor-
dinates and 2) by how generalized velocities are introduced. The
first issue has to do with finding a proper chart on the configura-
tion space, whereas the latter concerns the relation of velocities
and time derivatives of the configurations, i.e. the relation (2b).
The best solution for the first issue is to avoid local coordinates
at all. The Lie group concept provides such a geometric vehicle
that allows for coordinate-free modeling of frame transforma-
tions, where eitherSO(3)×R3 or SE(3) can be used. The sec-
ond issue concerns the particular configuration space Lie group,
noting thatq∈ G andV ∈ g.

The integration method considered in this paper is the Munthe-
Kaas method. Since the kinematic reconstruction is inherent to
the model the considerations shall apply to Lie group integration
schemes in general.

2 Two State Spaces for Rigid Bodies

The configuration of a rigid body, with respect to a space-fixed
inertial reference frame, is described by the position vector r ∈
R3 of the origin of a body-fixed reference frame and its rotation
matrix R ∈ SO(3), summarized by the pairC = (R,r). A rigid
body motion is thus a curveC(t). The crucial point is to assign
the Lie groupC is living in. The state space is then the product
of this Lie group and its Lie algebra.

2.1 Group of Proper Rigid Body Motions SE(3)

SE(3) represents frame transformations, i.e. the combination
of two successive rigid-body comfigurations are given byC2 ·
C1 = (R2R1,r2+R2r1). This multiplication rule indicates that
SE(3) := SO(3)⋉R3 is the 6-dimensional semidirect product
group of the rotation groupSO(3) and the translation group, rep-
resented asR3. Rigid body configurations can be represented in
matrix form as

C =

(
R r
0 1

)
(3)

which admits representing the group multiplication as matrix
multiplication

C2C1 =

(
R2R1 r2+R2r1

0 1

)
. (4)

A generic motion of a rigid body is a screw motion, i.e. an inter-
connected rotation and translation along a screw axis [2].
The velocity corresponding to the screw motion of a rigid body
is a twist V = (ω ,v) ∈ R6 with angular velocityω and linear
velocity vectorv. The body-fixed twistof a rigid body motion
C(t) is determined as

V̂ := C−1Ċ with V̂ =

(
ω̂ v
0 0

)
∈ se(3) (5)

wherese(3) is the Lie algebra ofSE(3). The assignment (5) is
a one-one correpsondance of twist coordinate vectors andse(3)-
matrices.ω̂ := RTṘ ∈ so(3) is the skew symmetric cross prod-
uct matrix associated to the vectorω . Via this isomorphism the
Lie bracket onse(3), in vector representation, is given the screw
product[V1,V2] = (ω1×ω2,ω1× v2−ω2× v1) [2]. For conve-
nienceω ∈ so(3) is written for a vectorω ∈ R3 to indicate that
isomorphism ofso(3) andR3 equipped with the cross product as
Lie bracket.
For any screwX = (ω ,v) ∈ R6 with screw axis parallel toω the
linear part can be expressed with a position vectorr on the screw
axis asv = r×ω +hω. The screwX describes an instantaneous
screw motion, i.e. a rotation about the axisω together with a
translation along this axis, whereh := ω · v/‖ω‖ is the pitch of
the screw. Ifh= 0, thenX are simply the Plücker coordinates of
a line parallel to the screw axis.
The Lie bracket can be expressed by a linear operation on screw
coordinate vectors as[V1,V2] = adV1V2 given by the matrix

adV =

(
ω̂ 0
v̂ ω̂

)
. (6)

The connection between an infinitesimal screw motionX(t) and
the correponding finite screw motion is given by the exponential
mapping onSE(3), which reads explicitly

X = (ω ,v) 7−→ expX̂ =

(
expω̂ (I −expω̂) (ω × v)+hω

0 1

)

(7)
where

expω̂ = I+
sin‖ω‖

‖ω‖
ω̂ +

1− cos‖ω‖

‖X‖
ω̂2 (8)
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is the exponential mapping onSO(3). Important for the Lie
group integration scheme is the differential of the exponential
mapping, dexp :se(3)× se(3) → se(3) that can be introduced

as dexp̂X
˙̂X = ĊC−1, with C = expX̂. Its signinifcance becomes

clear by replacingX with −X, which allows expressing the body-

fixed twist asV̂ = dexp−X̂
˙̂X. The numerical ODE integration

methods require the inverse of the dexp map. In vector represen-
tation of twists the inverse of dexp onSE(3) is [13]

dexp−1
X̂

= I−
1
2

adX +

(
2

‖ω‖2 +
‖ω‖+3sin‖ω‖

4‖ω‖(cos‖ω‖−1)

)
ad2

X

+

(
1

‖ω‖4 +
‖ω‖+ sin‖ω‖

4‖ω‖3 (cos‖ω‖−1)

)
ad4

X (9)

with X = (ω ,v). In vector representation ofso(3) the inverse of
the differential of the exp mapping (8) forR = expξ is given as
matrix [6]

dexp−1
ξ = I−

1
2

ξ̂ +

(
1−

‖ξ‖
2

cot
‖ξ‖
2

)
ξ̂

2

‖ξ‖2 . (10)

The state of a single unconstrained rigid body is represented by
the couple(C,V) ∈ SE(3)×se(3). The acceleration of the body
is the time derivativėV ∈R6. Making use of (5) the time deriva-
tive of C can be identified withV. The time derivative of the rigid
body state(C,V) is thus isomorphic to(V̂, V̇) ∈ se(3)×R6.
Consequently, inSE(3) representation, the state space of a rigid
body is the Lie groupSE(3)×R6 with Lie algebrase(3)×R6.
The multiplication on this rigid body state space is

(C1,V1) · (C2,V2) = (C1C2,V1+V2) . (11)

Being a Lie group the state space possesses an exponential map-
ping given by

exp : se(3)×R6 → SE(3)×R6

(V̂,A) 7→ (expV̂,A)
(12)

with the exponential (7). The rigid body state can thus be recon-
structed from its time derivative via this exponential mapping.
With the Lie bracket on the algebrase(3)×R6

[(V̂1,A1),(V̂2,A2)] = ([V̂1, V̂2],0) (13)

the differential of the exponential mapping is

dexp(V̂1,A1)
(V̂2,A2) = (dexp̂V1

V̂2,A2). (14)

2.2 Direct Product Group SO(3)×R3

Neglecting the interrelation of rotations and translations the mul-
tiplication is

C1 ·C2 = (R1R2,r1+ r2) (15)

which indicates thatC = (R,r) ∈ SO(3)×R3. The direct prod-
uct SO(3)×R3 is commonly used as rigid body configuration
space for Lie group methods [3,4,7,9,14]. Apparently this mul-
tiplication does not represent frame transformations. Theinverse
element isC−1 = (RT ,−r).
The Lie algebra of the direct productSO(3)×R3 is so(3)×R3

with Lie bracket

[X1,X2] = (ω1×ω2,0). (16)

The exponential mapping on the direct product group is

X = (ω ,v) 7−→ expX = (expω̂ ,v) (17)

with the exponential mapping (8) onSO(3). The dexp mapping
is accordingly

dexp(ξ ,u) (η ,v) = (dexpξ η ,v), (18)

with dexp mapping onSO(3). Its inverse is readily
dexp−1

(ξ ,u) (η ,v) = (dexp−1
ξ η ,v).

The velocity of a rigid body is, with configurationC∈ SO(3)×
R3, given as

(ω̂ ,vs) = (RTṘ, ṙ) :=C−1Ċ∈ so(3)×R3 (19)

and in vector notation denotedV = (ω,vs) ∈ R3 × R3, with
vs= ṙ. This velocity couple is clearly not a proper twist but con-
tains a mix of body-fixed angular velocityω and spatial linear
velocity vs. It is therefore calledhybrid representationof rigid
body velocities [5], [12]. It is frequently used for expressing the
Newton-Euler equations. Even though, angular and linear veloc-
ities are treated independently, and this definition does not reflect
the intrinsic characteristics of screw motions.
In hybrid representation the state of a rigid body is represented
by (C,V) ∈ SO(3)×R3× so(3)×R3. This is a Lie group with
algebraso(3)×R3×R6. Multiplication is defined as

(C1,V1) · (C2,V2) = (C1 ·C2,V1+V2) , (20)
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and the exponential mapping is, with (17),

exp : so(3)×R3×R6 → SO(3)×R3×R3×R3

(V,A) 7→ (expV,A) .
(21)

The Lie bracket is on this algebra is

[(V1,A1),(V2,A2)] = ([V1,V2],0). (22)

The differential of the exponential mapping is, with (18), given
by

dexp(V1,A1)
(V2,A2) = (dexpV1

V2,A2). (23)

3 State Space of MBS
3.1 Group of Proper Rigid Body Motions SE(3)
The configuration of an MBS consisting ofn rigid bodies is rep-
resented byq= (C1, . . . ,Cn) ∈ G⋉, where

G⋉ := SE(3)n (24)

is the 6n-dimensional configuration space Lie group. This is
a coordinate-free representation of MBS configurations. The
multiplication onG⋉ is understood componentwise, and thus
q−1 = (C−1

1 , . . . ,C−1
n ). The MBS velocities are represented by

V = (V1, . . . ,Vn) ∈
(
R6
)n

. The body-fixed velocities are deter-

mined byV̂ = q−1q̇ denotingV̂ = (V̂1, . . . , V̂n). The MBS state
space is thus the 12·n-dimensional Lie group

S⋉ := SE(3)n×
(
R6
)n

(25)

and the MBS state isX = (q,V) = (C1, . . . ,Cn,V1, . . . ,Vn) ∈
S⋉. The multiplication is X′ · X′′ =
(C′

1C′′
1, . . . ,C

′
nC′′

n,V
′
1+V′′

1, . . . ,V
′
n+V′′

n).
The corresponding Lie algebra is

s
⋉ := se(3)n×

(
R6
)n

, (26)

with x = (V1, . . . ,Vn,A1, . . . ,An) ∈ s
⋉. The exponential map-

ping on the state space is

expx= (expV1, . . . ,expVn,A1, . . . ,An) ∈ S⋉ (27)

with (12) with differential dexp :s⋉× s
⋉ → s

⋉

dexpx′x
′′ = (dexpV′

1
V′′

1, . . . ,dexpV′
n
V′′

n,A
′′
1, . . . ,A

′′
n). (28)

3.2 Direct Product Group SO(3)×R3

When the direct product group is used the MBS configuration
q= (C1, . . . ,Cn) ∈ G× belongs to the 6n-dimensional Lie group

G× :=
(
SO(3)×R3)n

(29)

and possess the inverseq−1 = (C−1
1 , . . . ,C−1

n ). The hybrid veloc-
ity of the MBS isq−1q̇= ((ω̂1,vs

1) , . . . ,(ω̂n,vs
n)), and written as

vectorV = (V1, . . . ,Vn) ∈
(
R6
)n

with Vi = (ω i ,vs
i ). Therewith

the MBS state space is

S× :=
(
SO(3)×R3)n

×
(
R6
)n

(30)

with state vectorX = (q,V) = (C1, . . . ,Cn,V1, . . . ,Vn) ∈ S×.
This is a 12· n-dimensional Lie group with multiplicationX′ ·
X′′ = (C′

1 ·C
′′

1, . . . ,C
′
n ·C

′′

n,V
′
1+V′′

1, . . . ,V
′
n+V′′

n). The Lie alge-
bra ofS× is

s
× :=

(
so(3)×R3)n

×
(
R6
)n

, (31)

with elementsx = (V1, . . . ,Vn,A1, . . . ,An) ∈ s
× where Ai =

(α i ,as
i ) represents the body-fixed angular and spatial linear ac-

celeration. The exponential mapping on the ambient state space
is

expx= (expV1, . . . ,expVn,A1, . . . ,An) ∈ S× (32)

with (17). The differential dexp :s×× s
× → s

× is, with (18),

dexpx′x
′′ = (dexpV′

1
V′′

1, . . . ,dexpV′
n
V′′

n,A1, . . . ,An). (33)

4 Munthe-Kaas Method for Constrained MBS
The Munthe-Kaas (MK) method [8, 10, 11] is a widely used in-
tegration scheme for ODE on Lie group that was applied to rigid
body dynamics such as [7]. Its appeal stems from its construction
since it is a direct extension of the Runge-Kutta method. In order
to apply MK a scheme the system equations must be expressed
in the form of a first-order ODE on the state space

Ẋ = XF (t,X) (34)

with a mappingF : R×S→ s. This is achieved with help of
the index 1 system (2). In order to solve forẊ, at a given
stateX = (q,V) ∈ S, the system (2) must be solved forV̇. It
remains to evaluate (2b) for ˙q. By introducing the mapping
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F (t,X) = (V, V̇), which includes solving foṙV, the system (2) is
equivalent to (34) sinceXF (t,X) = (qV, V̇). The equations (34)
can be regarded as the Boltzmann-Hamel equations on the state
space Lie group when its algebra is defined by left trivialization.
Evaluation ofXF (t,X) thus amounts to solving (2) foṙV and
evaluating (2b). Since both, the rigid body twists (5) and the hy-
brid velocities (19) are defined by left translation this applies to
theSE(3) and theSO(3)×R3 formulation as e.g. in [3,4,14].
In the MK method solutions are sought of the formX (t) =
X0expΦ(t). This allows replacing the original system (34) at
the integration stepi by the system

Φ̇(i) = dexp−1
−Φ(i)F(t,Xi−1expΦ(i)), t ∈ [ti−1, ti ], with Φ(i) (ti−1)= 0

(35)
with initial condition Xi−1. Notice the negative sign ofΦ(i) in
dexp, which is different from the original MK version. Origi-
nally the MK method is derived for right invariant systems, i.e.
ODE systems of the forṁX = F (t,X)X. Numerically solv-
ing (35) yields a solutionΦ(i) (ti), and thus a solutionXi :=
Xi−1expΦ(i) (ti) of (34). TheΦ(i) represent local coordinates on
the state space defined in a neighborhood ofXi−1. The system
(35) is solved by ans-stage RK method. This gives rise the cor-
respondings-stage MK scheme at time stepi

Xi := Xi−1expΦ(i), Φ(i):=h
s

∑
j=1

b jk j (36)

k j := dexp−1
−Ψ j

F (ti−1+ c jh,Xi−1expΨ j)

Ψ j := h
j−1

∑
l=1

a jl kl , Ψ1 = 0,

wherea jl ,b j , andc j are the Butcher coefficients of thes-stage
RK method, andk j ,Ψ j ∈ s.
It is well-known that the index 1 formulation suffers from con-
straint violations due to numerical drifts introduced by the nu-
merical update scheme. This is indeed carries over to the in-
troduced Lie group formulation, and the established constraint
stabilization methods can be applied. The paper [1] provides a
good overview of constraint stabilization methods.

5 Examples
5.1 Heavy Top in Gravity Field
As first example a heavy top is considered, i.e. a single rigid
body constrained to rotate about a space-fixed pivot point.
The model concists of a rectangular solid box with side lengths
0.1× 0.2× 0.4m connected to the ground by a speherical joint
as shown in figure 1a). A body-fixed reference frame (RFR) is
attached at the COM. In the shown reference configuration the
RFR is aligned to the space-fixed inertia frame (IFR). Assuming

aluminium material the body mass ism= 21.6 kg, and its iner-
tia tensor w.r.t. the RFR isΘ0 = diag (0.36,0.306,0.09) kg m2.
The position vector of the COM measured from the pivot point
expressed in the body-fixed reference frame is denoted with
r0 = (0.5,0,0)m. The configuration of the reference frame is
represented byC= (R,rs).

1

3

2

FIGURE 1. Model of a heavy top.

Motion Equations in Body-Fixed Representation The pivot
imposes the geometric constraints

g(C) = r0−RTrs = 0. (37)

Time differentiation yields the velocity and accelerationcon-
straints

(
R̂Trs I

)(ω
v

)
= JV= 0,

(
R̂Trs I

)( ω̇
v̇

)
=−ω̂ω̂r0+ω̂v

(38)
where the body-fixed twist is denotedV= (ω ,v). These together
with the body-fixed Newton-Euler equations w.r.t. to the COM
give rise to the system (2)




Θ0 0 −r̂0

0 mI I
r̂0 I 0






ω̇
v̇
λ


=




M− ω̂Θ0ω
F−mω̂v

−ω̂ω̂r0+ ω̂v


 (39)

where (37) is assumed satisfied.F andM is the external force
and torque, respectively, acting on the COM represented in the
body-fixed frame.

Motion Equations in Hybrid Velocity Representation In hy-
brid velocity representation(ω ,vs) the geometric constraints
(37) gives rise to the following velocity and acceleration con-
straints, respectively,

(
Rr̂0 I

)(ω
vs

)
= 0,

(
Rr̂0 I

)( ω̇
v̇s

)
= Rω̂ω̂r0. (40)
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The Newton-Euler equations w.r.t. to COM in hybrid represen-
tation yields




Θ0 0 (Rr̂0)
T

0 mI I
Rr̂0 I 0






ω̇
v̇s

λ


 =




M− ω̂Θ0ω
Fs

Rω̂ω̂r0


 . (41)

Fs is the external force acting on the COM represented in the
spatial frame.

Numerical Results No gravity or external forces and torques
are present, i.e. M = F = 0. The integration step size is
∆t = 10−3 s. In the reference configuration the top has the same
orientation as the inertial frame shown in figure 1a). The initial
angular velocity was set toω0 = (0,20π ,10π) rad/s so that the
top will perform a spatial rotation.
Figure 2 shows the deviation of the location of the COM refer-
ence frame for numerical solutions obtained with theSE(3) and
SO(3)×R3 formulation, respectively. TheSE(3) integration
yields the correct result within the computation accuracy while
theSO(3)×R3 formulation shows significant drifts.

a) t[s]

[m]

0 2 4 6 8 10

0

- 5.´ 10 -15

5.´ 10 -15

b) t[s]

[m]

0 2 4 6 8 10

0

- 1.´ 10 -5

3.´ 10 -5

- 2.´ 10 -5

- 3.´ 10 -5

2.´ 10 -5

1.´ 10 -5

FIGURE 2. Drift of rotation center for integration on a)SE(3), and
b)SO(3)×R3.

A reference trajectory was numerically determined by integrat-
ing the dynamic Euler-equations in quaternion parameterization
using a RK4 integration scheme with variable step size and rel-
ative and absolute accuracy goal of 10−6 and 10−9, respectively.
Figure 3 shows the kinetic energy drift for integration onSE(3)
relative to the initial valueT0 = 13.97 kJ. This is two orders of
magnitude smaller than the drift of theSO(3)×R3 formulation
(fig. 3b)).

a)

[J]E

6. ´ 10- 4

5. ´ 10- 4

4. ´ 10- 4

3. ´ 10- 4

2. ´ 10- 4

1. ´ 10- 4

0

t[s]
0 2 4 6 8 10

b)

[J]E

5. ´ 10- 3

4. ´ 10- 3

3. ´ 10- 3

2. ´ 10- 3

1. ´ 10- 3

0

t[s]
0 2 4 6 8 10

FIGURE 3. Drift of kinetic energy for a)SE(3) and b)SO(3)×R3

formulation.

5.2 Spherical Double Pendulum in Gravity Field

1

3

2

Joint 1

Joint 2

Body 1

Body 2

FIGURE 4. Spherical double pendulum.

The double pendulum is considered consisting of two slender
rigid bodies as shown in figure 1b). The two bodies are intercon-
nected and the pendulum as a whole is connected to the ground
by spherical joints. The two links are flat boxes with side length
a,b,c along the axes of the COM reference frame. Both have the
same dimension with lengthsa = 0.2m,b = 0.1m,c = 0.05m.
The configuration of the system is represented byC1 = (R1,rs

1)
andC2 = (R2,rs

2). The two links are subject to the geometric
constraints

g1(C1) = R1r0+ rs
1 = 0

g2 (C1,C2) = R1r10+ rs
1−R2r20− rs

2 = 0 (42)

whereri0, i = 1,2 is the position vector from the COM frame on
body i to the spherical joint connecting the two links, expressed
in the COM frame.r0 is the position vector from the COM frame
on body 1 to the spherical joint connecting it to the ground ex-
pressed in this COM frame. Denote withΘi0 the inertia tensor of
bodyi w.r.t. the COM frame, and withmi its mass.
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Motion Equations in Body-Fixed Representation The veloc-
ity and acceleration constraints corresponding to (42), interms of
body-fixed twistsV1,V2 ∈ se(3), are

0 =

(
r̂0 −I 0 0

R1r̂10 −R1 −R2r̂20 R2

)



ω1

v1

ω2

v2


= JV (43)

JV̇ =

(
ω̂1v1+ω̂1ω̂1r0

R1ω̂1ω̂1r10−R2ω̂2ω̂2r20+R1ω̂1v1−R2ω̂2v2

)
.(44)

Using a reference frame at the COM yields



Θ10 0 0 0 −r̂0 −r̂10RT
1

0 m1I 0 0 −I −RT
1

0 0 Θ20 0 0 r̂20RT
2

0 0 0 m2I 0 RT
2

r̂0 −I 0 0 0 0
R1r̂10 −R1 −R2̂r20 R2 0 0







ω̇1

v̇1

ω̇2

v̇2

λ 1

λ 2



=




−ω̂1Θ10ω1

F1−m1ω̂1v1

−ω̂2Θ20ω2

F2−m2ω̂2v2

∗
∗∗




(45)
where∗ and∗∗ are the terms in the two rows of the right hand
side of (44). Since only gravity forces act on the systems the
body-fixed forces areFi = RT

i gs, wheregs = (0,0,−g) is the
gravity vector w.r.t. space-fixed frame. The Lagrange multiplier
λ i ∈R3 is the reaction force in jointi.

Motion Equations in Hybrid Velocity Representation With
hybrid velocitiesVi = (ω i ,vs

i ) the velocity and acceleration con-
straints are

0 =

(
R1r̂0 −I 0 0
R1r̂10 −I −R2r̂20 I

)



ω1

v1

ω2

v2


= JV (46)

JV̇ =

(
R1ω̂1ω̂1r0

R1ω̂1ω̂1r10−R2ω̂2ω̂2r20

)
. (47)

The index 1 motion equations are, with force vectorsFs
i = gs,




Θ10 0 0 0 −r̂0RT
1 −r̂10RT

1
0 m1I 0 0 −I −I
0 0 Θ20 0 0 r̂20RT

2
0 0 0 m2I 0 I

R1r̂0 −I 0 0 0 0
R1r̂10 −I −R2r̂20 I 0 0







ω̇1

v̇s
1

ω̇2

v̇s
2

λ 1

λ 2



=




−ω̂1Θ10ω1

Fs
1

−ω̂2Θ20ω2

Fs
2
∗
∗∗




The terms∗ and∗∗ in the two rows of the right hand side of (47).

Numerical Results In the initial configuration C1 (0) =
(I,(a1/2,0,0)), C2 (0) = (I,(a1+a2/2,0,0)) the pendulum is
aligned along the space-fixed x-axis as shown in figure 1b).
The initial velocities are set toω10 = (10,0,0) rad/s andω20 =
(10π ,10π ,20π) rad/s. The pendulum is moving in the gravity
field. A time step size of∆t = 10−3s is used in the MK method
(36). Figure 5 and 6 reveal a generally better performance of

theSE(3) formulation. It also reveals that the constraint viola-
tion is more pronounced when it is due to the relative motion of
two screw motions, which explains that the violation in joint 2 is
higher than that in joint 1. The total energy drift is comparable
for both formulations (figure 7).

a)

[m]

- 2.´10-15

- 1.5´10-15

- 1.´10-15

- 5.´10-16

0

5.´10-16

1.´10-15

t[s]
0 1 2 4 53

b)

[m
]

-4.´10-5

-2.´10-5

0

2.´10-5

t[s]
0 2 4 12 146 8 10

4.´10-5

FIGURE 5. Violation of geometric constraints of joint 1 when inte-
grating theSE(3) (a), andSO(3)×R3 (b) formulation.

a) t[s]
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]

0 1 2 4 5

4.´10-5

2.´10-5

0

2.´10-5

3

b)

[m
]

-2.´10-4

0

2.´10-4

t[s]
0 2 4 12 146 8 10

4.´10-4

6.´10-4

8.´10-4

1.´10-3

FIGURE 6. Violation of geometric constraints of joint 2 when inte-
grating a) theSE(3), and b)SO(3)×R3 formulation.
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a)

-5.´10-3

0

t[s]
0 2 4 12 146 8 10

-1.´10-2

-1.5´10-3

-2.´10-2

[J]E

b) t[s]
0 2 4 12 146 8 10

-5.´10-3

0

-1.´10-2

-1.5´10-3

-2.´10-2

[J]E

FIGURE 7. Drift of total energy for a) theSE(3), and b)SO(3)×R3.

5.3 Interconnected Floating Bodies
Consider the situation in figure 8 where the two bodies in the
above spherical double pendulum mutually connected but arenot
connected to the ground. That is, the two bodies, connected by
one spherical joint, are free floating, and no gravity is assumed.
The motion equations are the same as those of the spherical dou-
ble pendulum above except that the first constraint in (43),(44),
and (46),(47), respectively, are removed.

1

3

2

Joint 1

Body 1

Body 2

FIGURE 8. Two floating bodies connected by spherical joint.

Again the initial configuration is such that the bodies are hor-
izontally alligned. The initial angular velocities areω10 =
(0,0,−10) rad/s andω20 = (1,−1,2π) rad/s.
The numerical results obtained by the Lie group integration
schemes are shown in figure 9. Apparently for this example both
formulations perform similarly regarding constraint satisfaction.
Also the kinetic energy drifts are similar as shown in 10.
This example differs from the previous ones in that the constraint
violation is caused by the spatial motion of two interconnected
bodies rather then by the motion of one body that is connectedto
the ground.

a) t[s]

[m]

0 2 4 6 8 10

- 3.´10 -7

- 2.´10 -7

- 1.´10 -7

0

1.´10 -7

b) t[s]

[m]

0 2 4 6 8 10

- 2.5 ´ 10 - 7

- 2. ´ 10 - 7

- 1.5 ´ 10 - 7

- 1. ´ 10 - 7

- 5. ´ 10 - 8

0

FIGURE 9. Drift of rotation center for integration on a)SE(3), and
b) SO(3)×R3.

a)

[J]E

t[s]
0 2 4 6 8 10

- 1.2 ´ 10 - 7

- 1. ´ 10 - 7

- 8. ´ 10 - 8

- 6. ´ 10 - 8

- 4. ´ 10 - 8

- 2. ´ 10 - 8

0

2. ´ 10 - 8

b)

[J]E

t[s]
0 2 4 6 8 10

- 8.´ 10-8

- 6.´ 10-8

- 4.´ 10-8

- 2.´ 10-8

0

2.´ 10-8

FIGURE 10. Drift of kinetic energy for a)SE(3) and b)SO(3)×R3

formulation.

5.4 Closed Loop Spherical 3-Bar Linkage
As final example the closed-loop three-bar mechanism in figure
11 is considered. Due to space limitations the motion equation
are not given here. The results in figure 12-14 confirm that again
that the constraints are perfectly satisfied if only the motion of
one body is to be estimated, i.e. the base joints. The constraint
violation of joint 2 connecting the two bodies is similar forboth
formulations. Also the energy drift of both formulations issimi-
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1

3

2

w0

Joint 1

Body 1

Body 2

Joint 2

Joint 3

FIGURE 11. Closed loop 3-bar linkage.

a) t[s]0 2 4 6 8 10

- 1. ´ 10-13

- 8. ´ 10-14

- 6. ´ 10-14

- 4. ´ 10-14

- 2. ´ 10-14

0
[m]

b) t[s]

[m
]

0 2 4 6 8 10

- 5. ´ 10 -6

0

5. ´ 10 -6

1. ´ 10 -5

FIGURE 12. Violation of geometric constraints of joint 1 when inte-
grating theSE(3) (a), andSO(3)×R3 (b) formulation.

lar (fig. 15).
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1. ´ 10-5
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3. ´ 10-5
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]

b)
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5. ´ 10 -6

1. ´ 10 -5

t[s]0 2 4 6 8 10

1.5 ´ 10 -5

- 1. ´ 10 -5
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FIGURE 13. Violation of geometric constraints of joint 2 when inte-
grating theSE(3) (a), andSO(3)×R3 (b) formulation.
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0[m
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- 5. ´ 10 -6

0

5. ´ 10 -6
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FIGURE 14. Violation of geometric constraints of joint 3 when inte-
grating theSE(3) (a), andSO(3)×R3 (b) formulation.
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FIGURE 15. Drift of total energy for a) theSE(3), and b)SO(3)×R3.
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6 Discussion and Conclusion
A generic rigid body motion is a screw motion, and the corre-
sponding velocity is a proper twist. Consequently the finitemo-
tion of a body is best approximated from its instantaneous twist
as finite screw motion. As the actual cause of the body twist
is irrelevant this applies equally to a free floating body as well
as to a holonomically and scleronomically constrained body, in
particular when jointly connected to the ground. From a compu-
tational point of view the numerical representation of screw mo-
tions is crucial. Generally, the Lie groupSE(3) represents rigid
body motions and is the proper rigid body configuration space
allowing for the reconstruction of finite motions from velocities.
Nevertheless, frequently the direct product groupSO(3)×R3 is
employed as configuration space. The latter does allow for repre-
senting rigid body configurations but not motions, however.The
question arises whether this is significant for the numerical simu-
lation. Lie group integration schemes take explicitly intoaccount
the configuration space manifold, so that the numerical update
within the integration scheme is different for the two configura-
tion spaces. With the above said it is clear that the actual per-
formance of the integration scheme depends on the underlying
configuration space Lie group, and it may be conjectured thatthe
SE(3) formulation outperforms theSO(3)×R3 formulation.
In this paper the accuracy of numerical Munthe-Kaas integration
schemes applied to the two formulations is investigated. The re-
sults confirm that theSE(3) formulation yields the best over-
all performance. In particular, since rigid body motions are de-
scribed relative to an inertial reference frame, theSE(3) formu-
lation allows for perfect reconstruction of the motion of a con-
strained rigid body if its motion is constrained to a proper motion
subgroup. This is the case when a rigid body is connected to the
ground (or to another slowly moving body) by a lower pair. In
the general case of rigid bodies connected by lower pairs their
relative motion belongs to a motion subgroup but their absolute
motion does not. In these cases also the reconstruction as screw
motion of the individual bodies from first-order motions cannot
capture the interdependence of their finite motions, and both for-
mulations perform equally.
In summary theSE(3) update scheme performs generally as
good as theSO(3)×R3 formulation while it outperforms the lat-
ter when bodies are constrained to a stationary body, in particular
the ground.
This advantage is owed to an increase in cmplexitiy since the
SE(3) update scheme is computationally more complex than the
standard direct productSO(3)×R3 update. In order to minimize
the complexity of the integration scheme, for a given problem,
the configuration space can be introduced so that theSE(3) is
used as configuration space where appropriate andSO(3)×R3

otherwise. Such tailored designation of configuration spaces will
be part of furure work aiming on integration schemes that min-
imize constraint violation in numerical MBS models. This pa-
per addressed the performance of MK integration methods. To

complete this study the effect of different configuration space for
other Lie group integration schemes will be investigated infu-
ture.
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