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ABSTRACT 
Störmer-Verlet integration scheme has many attractive 

properties when dealing with ODE systems in linear spaces: it is 

explicit, 2nd order, linear/angular momentum preserving and it 

is symplectic for Hamiltonian systems. In this paper we 

investigate its application for numerical simulation of the 

multibody system dynamics (MBS) by formulating Störmer-

Verlet algorithm for the constrained mechanical systems with 

the direct rotation group SO(3) upgrade in Lie-group setting. 

Starting from the investigations on the single rigid body 

rotational dynamics, the paper introduces modified RATTLE 

integration scheme with the SO(3) rotational upgrade that is 

designed via exponential map and utilization of the rotation 

group Lie-algebra so(3), which is determined from the 

canonical coordinate of Hamiltonian system during integration 

of the system dynamics.  

 CONFIGURATION SPACE AND BASIC FORMULATION  
In the adopted approach, the configuration space of MBS 

comprising k bodies is modeled as a Lie-group 

)3(...)3(... 33 SOSOG  RR  (k copies of )3(3 SOR ) 

with the elements of the form ) ,..., , ,...,( 11 kkp RRxx . Each 

factor )3(3 SOR  represents a configuration of the one single 

rigid body represented by ) ,( ii Rx  - its position vector and the 

rotation matrix w.r.t. a global frame (for rigid body i). G  is a 

Lie-group of the dimension kn 6  where k is the number of 

the rigid bodies. 

The angular velocity of a rigid body is given by the left-

invariant vector field so
i

ω~  defined as 
iii

tt ωRR ~)()(   

with so(3) being the Lie algebra of SO(3). A velocity of the one 

body (rigid body i) can thus be represented by the couple 

)3() ,( 3 so
ii

Rωv . 

Aiming on the application of the Lie-group integration 

scheme, also the MBS state space must be expressed as a Lie-

group. Therefore, the MBS state space 

...)3(...)3(...)3(... 3333  soSOSO RRRRS   

TGso  )3(...  is introduced, with the elements 

) , ,... , ,..., , ,..., , ,...,( 1111 kkkkq ωωvvRRxx . This is a Lie-

group itself and possess the Lie-algebra 
333333 ......)3(...)3(... RRRRRR  sosos

 with the element ), ,... , ,...,,
~

 ,...,
~

 , ,...,( 1111 kkkkz ωωvvωωvv  . 

To formulate dynamical model of the constrained MBS in the 

introduced state space, the constrained Boltzmann-Hamel 

equations are used [1] 

) , ,()()( tppp T
vQλCvM   

v
~
 pp  

0)( pΦ , 

(1) 

where M  is nn  dimensional generalized inertia matrix, 
nRv ,  Tkk ωωvvv  ,..., , ,..., 11  are the system velocities (k 

bodies are assumed), Q  represents the external and all other 
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forces, mRλ  is the vector of Lagrange multipliers and C  is 

nm  dimensional constraint Jacobian, such that 

vCvΦ )(
~

)( pp  , where Φ  is the differential mapping of the 

constraint mapping mG R :Φ . Consequently, a MBS is 

constrained to evolve on the n-m dimensional sub-manifold 

 0)( :  pGpS Φ . The equation v
~
 pp  in (1) achieves 

the reconstruction of the motion from the velocities v. 

RIGID BODY INTEGRATION SCHEME WITH THE 

ROTATIONAL GROUP SO(3) DIRECT UPGRADE   
To illustrate application of the Störmer-Verlet integration 

scheme [2], for the integration of the system configured as (1), 

the rotational dynamics of a rigid body (an essential and the 

most involved step within the overall MBS rigid body 

integration procedure) is studied in the sequel. With this aim in 

view, we model rigid body rotational dynamics as Hamiltonian 

system constrained to the Lie-group SO(3), and evolving on the 

cotangent bundle )3(*SOT . 

If we introduce diagonal matrix ),,(diag
321

dddD  with 

the coefficients defined in (2), where the eigenvalues 
1

I , 
2

I , 
3

I  

of the rigid body inertia tensor are given as 

)(  ,  ,  , 2

213132321
xdmxdddIddIddI

kk 
B

, 

 

(2) 

the kinetic energy 
k

E  of the system can be written as [8] 

)(trace)
~~

(trace
2

1 TT

kE RDRωDω  , 

 

(3) 

where we use left trivialization equation ωRR ~  [3]. 

Introducing the conjugate momenta 

DR
R

P 
 




 k

E
, 

 

(4) 

we obtain the following system Hamiltonian where both P  and 

R  are 33  matrices 

)()(trace
2

1
),( 1

RPPDRP UH T  
, 

 

(5) 

and where we suppose to have, in addition to 
k

E , an external 

potential )(RU . Then, the equation of motion for a rigid body, 

modeled as a constrained Hamiltonian system [5, 7], can be 

written as 
1),(  PDRPR

P
H  

RΛRRΛRPP R  )(),( UH
 

IRR0  T
  

 

(6) 

where we use the notations )/(
ij

UU R , 

)/( ijHH RR  ,  and similarly for H
P

 .  

Here, the coefficients of the symmetric matrix Λ  correspond to 

the six Lagrange multipliers associated to the constraint 

equation 

0IRR T , 
 

(7) 

that is due to the redundant formulation of the rigid body 3 

DOF rotational kinematics. After differentiation of this 

constraint at the ‘generalized position’ level, we obtain 

‘velocity’ constraint equation 0RRRR  TT  , which yields 

0RPDPDR   TT 11 . 
 

(8) 

These two constraints imply that the equations (6) constitute a 

Hamiltonian system constrained on the manifold 

 0RPDPDRIRRRP   TTT 113333   ,  ;),( RRK . 

 

Here, it should be emphasized that K  is not cotangent bundle 

)3(*SOT  associated to the manifold SO(3). 

By following [6, 9], we introduce Störmer-Verlet 

integration scheme for the constrained mechanical systems in 

the RATTLE form. In the contrast to the ‘standard’ RATTLE 

scheme [5, 6], we introduce the rotational upgrade on SO(3) via 

Lie-group integration step, as indicated in the second equation 

of (9). With this operation in place, the RATTLE integrator for 

the rigid body rotational dynamics can be written in the form 

),(
2

)(
2

00002/1 QPΛRRPP
h

U
h

  

)exp( 1

2/1001

 DPRRR
Th  

1112/11
2

)(
2

ΛRRPP
h

U
h

 , 0RPDDPR  

11

11

11

TT
 

 

(9) 

where 
0

Λ  and 
1

Λ  are symmetric matrices. Unlike 
0

Λ (that, in 

this formulation, will be substituted by the expression 

),(0 QPΛ , derived via differentiation of (8) and explicit 

elimination of 
0

Λ in the first equation of (9)),  
1

Λ  is the 

velocity constraint Lagrange multiplier that ‘forces’ solution of 

1
P  to stay on the constraint manifold given by (8) - on 

technical terms, the calculation of the last two equations of (9) 

requires solving of linear algebraic systems for 
1

P  and 
1

Λ . 

On the contrary to angular velocities, the satisfaction of the 

‘generalized position’ constraint (7) within the algorithm is 

automatically assured by the exponential mapping operation 

incorporated into the second equation of (9). 

As a numerical illustration of the algorithm, we consider the 

motion of freely spinning body [4]. The initial condition is body 
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angular velocity  T03476.082623.045549.0
0
ω  and 

inertia tensor with the diagonal elements 

)661,0981,91440(diag . . .J .  

A body angular velocity (expressed in the body coordinate 

system) and elements of the body rotation matrix )3(SOR  

are shown in Figure 1 and 2.  

 

 
FIGURE 1.  BODY ANGULAR VELOCITY. 

 

 
FIGURE 2.  ELEMENTS OF ROTATION MATRIX R . 

 

 
FIGURE 3.  PROPERTIES OF ROTATION MATRIX 

)3(SOR . DIAGONAL ELEMENTS OF PRODUCT 

IRR T  AND DETERMINANT 1det R . 

 

The matrix entries along the main diagonal as well as the matrix 

determinant 1)det ,(  RIRR
T  are presented in Figure 3. 
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