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ABSTRACT

A Lie-group integration method for constrained multibody systems is proposed in the paper and applied
for numerical simulation of a satellite dynamics. Mathematical model of multibody system dynamics is
shaped as DAE system of equations of index 1, while dynamics is evolving on Lie-group introduced as
system ‘state-space formulation’. The basis of the method is Munthe-Kaas algorithm for ODE on Lie-
groups, which is re-formulated and expanded to be applicable for the integration of constrained multibody
dynamics in DAE index 1 form. The constraint violation stabilization algorithm at the generalized
position and velocity level is introduced by using two different algorithms: a first one that operates
directly on the ‘state-space’ manifold and, a second one, that uses Cartesian rotation vectors as local
coordinates for the generalized positions. A numerical example of ‘dual-spin’ satellite that demonstrates
the proposed integration procedure is described and discussed at the end of the paper.

1. INTRODUCTION

Design of the numerical integration methods that operate on manifolds and Lie-groups, instead of linear
vector spaces like ‘standard’ ODE and DAE integrators, offer some attractive features such as numerical
robustness and avoidance of the kinematical singularities as well as numerical efficiency of the code.
Along this line, the goal of the paper is to propose mathematical model and numerical integration
algorithm based on Munthe-Kaas Lie-group integration scheme [10, 11] that will be pertinent to
multibody dynamics application cases. The state space of multibody system is modeled as a manifold
(Lie-group) and mathematical model of the numerical scheme is shaped as DAE of index 1. The method
is primarily focused on dynamics of rigid body multibody systems, although its application can be easily
extended also on the systems that possess elastic components.

2. GEOMETRIC DAE INTEGRATION PROCEDURE FOR MBS

2.1. Lie-group ODE integrator

The configuration of a rotating rigid body is given by a rotation matrix R that belongs to Special
Orthogonal Group SO(3):

SO(d) ={Re R¥*:RR" =1, det R =+1. )

From the geometrical point of view, SO(3) can be considered as a differential manifold (space with
different possibilities of parametarizations on which we can do calculus). Tangent vectors R to SO(3) at

point R € SO(3) of the manifold belong to the tangent space TRSO(3), R €TgSO(3). Moreover,

SO(3) has the properties of Lie-group, where the tangent space at the group identity | has an additional
structure. This vector space is equipped with matrix commutator and constitutes Lie-algebra of SO(3), the

set of skew-symmetric matrices denoted by so(3). The element of Lie-algebra 5)650(3) can be



identified with R* via mapping operator which maps a vector @ € R to a matrix e S0(3). Between
the elements of the group R € SO(3) and Lie-algebra (7)650(3) exists natural correspondence via

exponential map [5, 4, 9] and the expression R(t) = exp(tg)) is solution of the inital value problem

R(t)=R(t)®, R(0) =1 . @)
Also, the Lie-algebra element « defines left-invariant vector field X~ on SO(3) via relation
X (R) = Ly (@), X (R) e T;SO(3) , where the tangent map L} (@) :TSO(3) —>TSO(3) is  given
as Lg (cT)) =R defining left kinematic Poisson relation R=Ro. Equivalently, instead of using body
coordinates @ , the right Poisson equation can be formulated as R :E)SR by using angular velocity

expressed via spatial coordinates (:)S [8]. As explained above, left and right Poisson kinematic equation

represent differential equation on SO(3), since R € SO(3) and the angular velocity tensor ((7) or g)s )
belongs to Lie-algebra so(3). In the case when angular velocity is not a constant skew-symmetric matrix
(as it is the case in the equation (2), which has solution R(t) =exp(t®) ), body kinematics that evolves

on SO(3) is to be computed numerically. In the general setting, the objective is to find solution of
differential equation on a matrix Lie-group G, with Lie-algebra g, in the form

Y () = AY (O (1), @3)

where Y(0) e G and A(Y)e g forall Y €G and right trivialization is used. The equation (3) can be

numerically solved by using different geometric integration methods [5, 4], such as
Munthe-Kaas algorithm [4, 11] that assumes result in the form

Y (t) =expU®)Yo 4)

where u(t) is the solution of

u=dexp, (A(Y(t))), u(0)=0. (5)

By following this route, the numerical solution of kinematic equation (3) can be incorporated into the
computational procedures based on Newton-Euler formulation, where rotational dynamics of rigid body is
studied directly on SO(3). This leads to more efficient procedures since no local parametarisation of 3D
rotation is needed.

2.2. Lie-group DAE integration procedure

2.2.1. Procedure framework

The configuration space of MBS is modeled as G = R* x...x R% x SO(3) x...x SO(3) , which is a n-

dimensional manifold with Lie-group properties, consisting of translational and rotational kinematical
domains of each rigid body in MBS. The Lie-group composition operation GxG — G s introduced by

Peom = Py © P,, Where Py, Py, Peom €G  and the identity element e of the group is defined as
poe=eop=p,VpeG. The Lie-algebra g =T,G (vector space that is isomorphic to R") is defined
as the tangent space TG at the identity p=e. The tangent vector in T G (at any point peG) can be

represented in Lie-algebra g via derivation L’p of the left translation map L,: G —>G,y> poy.

Thus, for y=e, we can define bijection L;(€):g ->T,G, Q> L,(e)-Q , where L (e)-Q is



directional derivative of Lp at the point y=e in direction of Q g (since G is Lie-group, the element of

Lie-algebra € defines left invariant vector field on G, similarly as it was the case with SO(3)).

To incorporate kinematical constraints of MBS, the function ®:G — R" are imposed on G, meaning
that system is constrained to evolve on the n-m dimensional sub-manifold S ={p eG :(I)(p)=0}.
Consequently, dynamic equations of MBS are shaped in the form [1]

M(p)V+Q(p,V,t)+C" (p)h=0
®(p)=0 (6)
p=L,()-V,

where M is nxndimensional inertia matrix, ve R", v=[vl,...,vk,ml,...,cok]T are system
velocities (k bodies are assumed), Q represents external and non-linear velocity forces, A € R™ is the
vector of Lagrangian multipliers and C is mxnN dimensional constraint gradient matrix, such that
@'(p)- Q=C(p)Q, VQ e R" is valid. The equation (6) represents DAE system of index 3. Within the
framework of the proposed integration procedure, the equation (6) will be re-shaped into the DAE of

index 1 form by including kinematical constraints at the acceleration level (iS(p,v,V) =0 (instead of
®(p) =0) and integrated by the routine based on the Munthe-Kaas algorithm.

To ensure that kinematical constraints are satisfied during integration, constraint violation of the system
velocities v e R" and generalized positions p € G will be corrected by using stabilization algorithm.

2.2.2. Integration algorithm

As introduced, the configuration space of MBS is modeled as Lie-group
G =R3x..xR*xSO(3) x...x SO(3) where translation and rotation of each rigid body is included in
the n-dimensional configuration domain and element of the group is given as
P = (Xy,-..s Xy, Ry,e., Ry ) . However, since proposed time integration routine operates ‘simultaneously’
at the generalized positions and generalized velocities, a system has to be modeled on the 2n-dimensional
Lie-group S =R> x..x R*xSO(3) x...x SO3) x...x R x..x R* x50(3) x...x 50(3) = TG

(a system ‘state space’) with the element

0= (X0 X Ryt Ry, Vi oo Vi, @ @) @)
and its Lie-algebra §=R>x...x R*x50(3)x...x50(3)X...x R x. x REx R3x..x R® with the
element given as

Z:(Vl,...,vk,a)l,...,(;k,\'/l,...,\'/k,(;;l,...,a)k). (8)

By confining ourselves on a single body system to keep formulation short, we introduce operations in
Lie-group S and its Lie-algebra § as follows.

Productin S: (a,b,c,d)-(e,f,g,h)=(a+e,b-f,c+g,d+h).
Addition in §: (v,w,c,d)+(\7,v_v,E,a)z(v+\7,W+v_v,c+E,d+a).
Multiplication by scalar in s: a(v,w, ¢, d) =(av, aw, ac, od) .

Exponential map in s: exp(v, w,c,d) = (v,exp(w),c,d).

Bracketin s: [(v,w,c,d),(v,w,c,d)]= (0, wxw,0,0).



Here, on the right hand side of definitions, ‘-’ is the multiplication in SO(3), ‘+’ is addition in Rand

so(3) and exp is exponential map on so(3). The operations in § and S of multibody system, consisting of
system of k bodies, is defined component-wise equivalently as for a single body system.

With all Lie-group operations in place, a differential equation describing dynamics of MBS on Lie group
S can be written in the form

g=F(a)q, ©)
where qe S and F: S— s isgiven by F: q— z, where elements g and z are given by (7) and (8).

. T
During evaluation of F: q—>z, the variables Vz[\'/l,...,\'/k,col,...,wk} are determined by the

M C'|v
= Q , (10)
C 0 |a 13
which has to be solved (linear algebraic system for variables v and A ) within integration algorithm of

the differential equation (9).
The equation (10) represents first two equations of system (6), shaped as DAE of index 1, where the

system dynamics equation

acceleration kinematical constraints ('I'D( p,V,V) =0 are introduced as Cv =& [12].

The differential equation (9) of the system dynamics on S has the same form as differential equation (3)
and can be solved by using Munthe-Kaas (MK) type of integration algorithm [10, 11]. Similarly as it was
the case with (3), (9) can be solved by introducing local integration coordinate u in § that satisfy

u=dexp,"(F(a)), u(0)=0. (1)

Within MK method, (9) is integrated in § and numerical solution is than reconstructed on S via
exponential mapping. The algorithm itself can be given in the form [11]

o = Oy
fori=12,...,s
i-1 ~
U =h2 ak

ki = F(c;h, exp(u;, )
=dexpinv(u;, k;, n)

~

end
. -
V= th:lbjkj

dw =exp(v, go)
where the coefficients are given by the classical s-stage nth order Runge-Kutta method's Butcher table
[10, 11, 7] and function dexpinv is defined as follows [5, 4, 11]

dexpinv(, k, n) =k —%[u, k]+ nzl% uu. [ Ju k]

p=2

The variables u;,k;,k; are MK method internal integration variables [11, 3] (similar as those that are

defined within the framework of RK algorithms - MK methods reduce to RK algorithms when operate in
vector space), which have the same format as z given by (8), see also (11).



2.3. Constraint violation stabilization procedure

A numerical solution obtained by the described algorithm will satisfy constraint equation at the
acceleration level <’1'>(p,v,\'/)=0 automatically, since this equation is directly incorporated in the
function evaluation F: S — s via formulation (10). However, the constraint equations for the
generalized positions @(p) =0 and velocities (i)(p,v) =0 (which can be also written in the form
C(p)v=E&[12]) that are also part of DAE formulation (6), will be unavoidably violated during the

straightforward integration based on the MK type of algorithm.

For the purpose of constraint stabilization procedure that operates directly on S, we propose a projective
method that is based on nonlinear constrained least square problem given in the form

Pk — P

(where || ||W denotes the weighted norm). The projected variables have to satisfy constraint equations

2
min
(P vk

. ®(p)=0, RR," =1, ®(p,v) =0, (12)

w

®(p)=0, RiRiT =1 and Ci)(p,v) =0 to obtain stabilized values p, ,V, , as expressed in, while

ﬁk , \7k are ‘un-stabilized’ values that are obtained from the integrator for the current integration step. It
should be emphasized here that described constraint stabilization at the velocity level (that brings
stabilized value v, from the initial integration value \7k) is a ‘linear’ one-step projective process, while

‘generalized position’ P, stabilization requires iterative procedure.
In the sequel, a linear procedure also for ‘position” variables, based on Cartesian rotation vectors [2] that
are related with R; € SO(3) by the equation

R, =1+i’i+%‘i’i2+...:exp0i’i), (13)

will be introduced. Along this line, to design non-iterative constraint stabilization procedure for the
variables p=(X;,...,X,, Ry,...,R,), we note that stabilized constraint equation at the generalized
position level should read

@(p) =0, (14)
but, because of the numerical errors, current integration values of p do not satisfy (14) completely,
yielding

D(p)#0, (15)

where [ are ‘un-stabilized” values that are results of the current integration step. To calculate “final’
(stabilized) values of p that satisfy (14) for the current step, we write.

D = (X, + AXy,o X + AX, R, EXPAG, )., R, eXP(AB,)), (16)
where AX;,A®; are correction values that have to be introduced to bring P in accordance with (14) . In

(16), AX;is a ‘standard’ vector correction of the linear displacement (body position), while A®; is Lie-
algebra vector component representation (expressed in skew-symmetric matrix/tensor form pertinent to
so(3) by using body-fixed coordinate system) of a small rotation correction vector A@Ri needed to

adjust orientation of the body i to be in accordance with the (14). Furthermore, by following [2], the
variations @ and S, are related by



é('DR, =T(¥;)o¥;, @an

where T('¥;) is a tangent operator that relates tangent spaces T,SO(3) and T SO(3), see [6, 2] for

the details.

To proceed with the design of the non-iterative ‘position’ constraint stabilization procedure, we will adopt
the algorithm proposed in [13] and adjust it to be valid within the manifold S computational framework.
Since ‘original® constraint equation (14) is not satisfied due to the integration numerical errors, it is
proposed in [13] to expand (14) by adding variation correction term as

D+5D=0. (18)

The equation (18) is then used as a basic equation for calculation of the necessary increments of the
system coordinates by linearising OS® and keeping only first variation of the coordinates into
consideration. However, in the case of calculation on S via variables p, we can not proceed with
equation (18) directly since S is a manifold (a non-linear space) and addition that would combine
evaluation of the function @ at the different points on the manifold is not a defined operation.

Therefore, we will adopt vectorial representation of the rotations by using ¥; instead of R; € SO(3)

and, by noticing that we can write @( f)) = C[)(d) the equation (18) can be written in the ‘local’ vectorial
form

a>(ﬁ>+(a®/6q)[%} _o, 19)

where we adopted local system coordinates as q=[x ‘I’]. By solving equation (19) for the
variations oX, 0¥, after assuming that correction increments are small enough that can be substituted by
the first variations i.e. AX=~X,A¥Y ~Oo¥, we are able to find correction terms that via relation

q=q+ ie.
)

bring unstabilized values q into the stabilized variable q that satisfy ‘position’ constraint equation

(I)(q) =0 for the current integration step.

However, the equation (19) is undetermined and, to make it solvable, we will assume that correction
terms oX,oW are completelly ‘sunk’ into the constrained subspace that are spanned by the rows of the

constraint matrix (0®/aq)" . Thus, we can write
& =(0®/oq) &, (21)

where vector & € R™ of the &G projection values onto the (6®/dq)" constrained subspace has to be
determined. By substituting (21) into (19), we can write

& =—|(o@/2q)(0@/ o0)" ['@(p), (22)

where  (86®@/59)(@®/6q)" € R™™is invertible under assumption that system constraints are

independent and (6®/aq)" has full row rank.

By substituting (22) back to (21), we obtain final equation for determination of the needed correction
values in the form [13]



. [s
80 =—(0®12q)" [(0@/ dq) 0@/ ag)" [*@(p) = [a\ﬂ . 23)

Once we determine stabilization correction terms AX, AW from (23), a position correction for the linear
displacement AX has a final value for the step (variable x is also a ‘global’ coordinate of the manifold
S'), while the final corrected value of the R; € SO(3) should be calculated on the basis of A¥ via
relation

R, = Iii exp(A(:)i) = exp(‘i’i +A‘i’i) . (24)

It shold be emphasised that the proposed stabilization algorithm is straightforward and non-iterative, but it
should be undertaken frequently during the integration process since the small correction values that can
be substituted by the first variations are assumed.

3. NUMERICAL EXAMPLE

As an example of the case with large 3D rotations domain, a dual-spin satellite (also known as a gyrostat)
is considered. The satellite is illustrated in Figure 1. It is composed of two rigid body connected by a
revolute joint. There is usually large section, called the rotor (A) who contains satellite housekeeping
equipment (solar arrays, main control computer and etc.) and platform (B) which usually contains the
actual communications repeaters. The considered satellite is based on the model of the dual-spin satellite

GOES-7. The mass and inertia tensor of the rotor are 300kg and J, = diag(175175150) kgm?.
The platform's mass and inertia tensor yield 100kg and Jg =diag(43.75,43.75,50) kgm?
respectively. The reference points and initial conditions are X, :[O 0 O]T, Xg :[O 0 1.75]T,
Ro=1, Rg=1, 0, =[0 0 1] radis and @, =[0 0 0.1] rad/s. Furhermore, a constant

torque M4 =[100 200 O]T Nm is applied to the rotor.

A matematical model for the dynamic simulation of satellite is shaped as a differential-algebraic system
(DAE) of index 1. Translational and rotational parts of system dynamical equations are given in the
standard form

MoV, —ChAT =0, (25)
MgVg —Cp A" =04y, (26)
J,0p +®pJ a0p + X,REAT = M2, @7)
Jo0g + 05505 + XgREAT =0, (28)

where X, and Xg are the rotor and platform mass center positions, ®, and ®g represents rotor and
platform angular velocities, M, Mg, J, and Jg are rotor and platform masses and tensors of inertia,

A" stands for joint reaction force, C, and Cg are rotor and platform constraint matrices, X, and Xg

are rotor and platform mass centers in the local coordinate system fixed to the bodys, and R,and Rg

are rotation matrices that relates body coordinate system to inertial coordinate system. Mechanical
system constraints at position, velocity and acceleration level that represent joint between rotor and
platform are given as

Xp +RAXA —Xg —RpXg =0y, (29)



[(RAEAl)T RgEg; (RAEAZ)T RBEBS]T =0,4, (30)

I3 —RaXa —1l; RpXg
~ ~ |lo
O3 —(RgEgy)’ RABa Ong — (RAEa)' RsEgs VA =054, (31
Ops —(ReEgs) RaEnz Ops  —(RaEn)  RgEgg mB
B
~ ~ Vi
1, “RAX, 1, RoXg .
~ ~ |lo
Os —(ReEgs) RAEm Ons —(RAEa) RgEes \-/A = (32)
Ops —(ReEgs) RaEnz Ops —(RaEa)" RgEgg O-JB
B

“RLo0,0,X, +Rg0,0:X,
=| (Rg®gEgy)’ RAEm + (RgEgs)’ RA(’OAEAl)(DA +((RA®AEL) RgEe; +(RAEA)" RpogEg;)og
((RB(")BEBS)T RAEx + (RBEss)T RA®AE )@, + ((RAmAEAz)T RgEgs +(RAEA2)T Rg0gEg;)0g

where {EAl, Ea EA3} and {EBl, Eg,. EBs} are two triads of orthogonal unit vectors fixed to the rotor

and platform. The system constraint matrix is shaped in the form

Is - RA;(A =13 RB;(B
C=|0ys - (RBEBS)T RAEAl Ops - (RAEAl)T RBEB3 ; (33)
Oys _(RBEss)T RAER Ous —(RAER,)' RgEgs

which allows for assembling equations of system dynamics in DAE of index 1 form

_mAIS U 030 05 _ I _ (U _ 034 __VA_
035 Ja 044 (U8 XAR,TA EA1RTARBE53 EAZRTARBEBG, (!.)A
035 04 mgl, 044 _ I - 0,4 N 044 Vg
03 Ozxa~ 044 Jg _XBR; EBBR;RAEA:L EBSR;RAEAZ Qg =

Is RAXA _ - |3 RBXB _ 03><3 Ole 03><1 A
les - (RBEBB)T RAEAl le3 - (RAEAl)T RBEB3 01x3 lel lel ﬂ‘;‘
L 01x3 - (RBEB3)T RAEAZ 01><3 _(RAEAZ)T RBEB3 lea lel lel __/12 i
(34)
i - 03x1 ]
—0,J,0, +M3
~03><1
= —0g);0,

3 ~R,0,0,X, +R0,0,X; _
(Rpo,Eg)’ RAEAl +(RgEg)" RAmAEAl)mA +((RA®,EL)’ RBEBB +(RAEL) RBmBEBs)mB
_((RBmBEB3)T RAEA, + (RBEBs)T RA®,E )0, +((RA0)AEA2)T RgEg + (RAEAZ)T RBmBEBs)mB_

In equation (34), the multiplier AT s interpreted as joint reaction forces, whereas /ﬂ‘ and /”tizt are

interpreted as joint reaction torques in the revolute joint along axis E,; and E,,. The equation (34) is

shaped as DAE of index 1 and integrated by the routine based on 4rd order explicit Munthe-Kaas
algorithm. The results of numerical integration are given by the Figures 2 — 4.



Mathematical model is implemented in the MATLAB programming environment, while ADAMS
package has been used only for post-processing based on the off-line calculation via described
matematical model. The spatial trajectories of rotor and platform mass centres are given in Figure 2. The
results shown in Figure 3 and 4 present components of the position of rotor and platform mass centres and
angular velocitys.

Trajectories of rotor and platform mass centres

Trajectories
* Start
05— * End
0 ‘ o
E o5 AT
9 Rl S
",m 1.
K(
15.
-2
1
0 2
Xaz ¥go (M) 22 Xy p1 Xgq (M)
Figure 1. Sequence of the motion animation Figure 2. Spatial trajectories of rotor and
(post-processed via ADAMS). platform mass centres.
is Rotor and platform angular velocities 15 Rotor and platform mass center positions

AN
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0 2 4 6 8 10 [o] 2 4 6 8 10
Time (s) Time (s)
Figure 3. Rotor and platform angular velocities. Figure 4. Rotor and platform mass center
positions.

Proposed integration algorithm operates directly on the Lie-group of the system state space, avoiding
kinematical singularities that are always present within the vector space formulations of the large 3D
rotation domain, such as one presented here. By overviewing Figures 2—4 which are showing integral
curves of the system position and angular velocity, it is visible that all obtained results are smooth
functions without any discontinuities.

4. CONCLUSIONS

The Lie-group integration method for constrained multibody systems is proposed in the paper. The
method operates on Lie-group of system configuration space that is modeled as ‘state space formulation’.
The system constraints are introduced in the mathematical model via DAE of index 1 formulation.

In order to stabilize constraint violation during integration procedure, two constraint stabilization
algorithms are described: a constraint violation minimization by using constraint manifold projection
methods based on solving nonlinear constrained least square problem (the algorithm is based on global



system coordinates and operates directly on the system state-space manifold) and projections along the
constraint gradients by using (local) Cartesian vector rotation parameterization.

Since integration algorithm operates directly with angular velocities and rotational matrices, meaning that
no local (generalized) coordinates are introduced, the method circumvent problems of kinematic
singularities of rigid body three-parameters rotation basis, re-parameterization of system kinematics
during integration as well as numerical non-efficiency of the kinematic differential equations. Within the
presented example, method showed numerical robustness and it is easy-applicable on the general class of
multibody systems.
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