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Abstract. A Lie-group integration method for constrained multibody systems is proposed in 
the paper. Mathematical model of multibody system dynamics is shaped as DAE system of eq-
uations of index 1, while dynamics is evolving on Lie-group introduced as system ‘state space 
formulation’. Integration algorithm operates directly with angular velocities and rotational 
matrices and no local (generalized) coordinates are introduced. The basis of the method is 
Munthe-Kaas algorithm for ODE on Lie-groups, which is re-formulated and expanded to be 
applicable for the integration of constrained multibody dynamics, where constraint violation 
stabilization is one of the important issues that must be successfully solved. 
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1 INTRODUCTION 
Design of the integration methods for dynamic simulation of mechanical systems based on 

Lie-group formulations offers some attractive features such as simplicity and numerical effi-
ciency of the code. The possibility of using global rotational coordinates for kinematic defini-
tion of the system certainly appeals for numerous applications. The additional motivation for 
taking this approach can be based on the fact that geometric formulation provides integration 
schemes that can preserve global characteristics of motion (such as conservation of the first 
integrals) in 'more naturally' manner than 'classical' methods that operate in vector spaces.       

 

2 GEOMETRIC DAE INTEGRATION PROCEDURE FOR MBS 

2.1 Lie-group ODE integrator 
The configuration of a rotating rigid body is given by a rotation matrix R  that belongs to 

Special Orthogonal Group SO(3):  

{ }1det,:)3( 3x3 +==∈= RRRR ITSO R  (1) 

From the geometrical point of view, SO(3) can be considered as a differential manifold (space 
with different possibilities of parametarizations on which we can do calculus). Tangent 
vectors R  to SO(3) at point )3(SO∈R  of the manifold belong to the tangent space )3(SOTR , 

)3(SOTRR ∈ . Moreover, SO(3) has the properties of Lie-group, where the tangent space at 
the group identity I has an additional structure. This vector space is equipped with matrix 
commutator and constitutes Lie-algebra of SO(3), the set of skew-symmetric matrices denoted 
by so(3). The element of Lie-algebra (3) ∈soω~  can be identified with 3R via mapping 
operator which maps a vector 3R∈ω to a matrix (3) ∈soω~ . Between the elements of the 
group )3(SO∈R  and Lie-algebra (3) ∈soω~  exists natural correspondence via exponential 
map [1, 2, 11] and the expression )~exp()( ωR tt =  is solution of the inital value problem 

ωRR ~)()( tt = , I=)0(R . (2) 

Also, the Lie-algebra element ω~  defines left-invariant vector field ωX~  on SO(3) via relation 
)~()(~ ωRX Rω L′= , )3()(~ SOTRω RX ∈ , where the tangent map )3()3(:)~( TSOTSOL →′ ωR  is     

given as ωRωR
~)~( =′L  defining left kinematic Poisson relation ωRR ~= . Equivalently, instead 

of using body coordinates ω~ , the right Poisson equation can be formulated as RωR S
~=  by 

using angular velocity expressed via spatial coordinates Sω~ [3]. As explained above, left and 
right Poisson kinematic equation represent differential equation on SO(3), since )3(SO∈R  
and the angular velocity tensor (ω~  or Sω~ ) belongs to Lie-algebra so(3). In the case when 
angular velocity is not a constant skew-symmetric matrix (as it is the case in the equation (2), 
which has solution )~exp()( ωR tt = ), body kinematics that evolves on SO(3) is to be computed 
numerically. In the general setting, the objective is to find solution of differential equation on 
a matrix Lie-group G, with Lie-algebra g, in the form        

)())(()( tYtYAtY = , (3) 

where GY ∈)0(  and gYA ∈)(  for all GY ∈ and right trivialization is used. The equation (3) 
can be numerically solved by using different geometric integration methods [1, 2], such as  
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Munthe-Kaas algorithm [2, 7] that assumes result in the form 

0))(exp()( YtutY = , (4) 

where )(tu  is the solution of 

)))(((exp 1 tYAdu u
−= , 0)0( =u . (5) 

By following this route, the numerical solution of kinematic equation (3) can be incorporated 
into the computational procedures based on Newton-Euler formulation, where rotational 
dynamics of rigid body is studied directly on SO(3). This leads to more efficient procedures 
since no local parametarisation of 3D rotation is needed. 

However, for a more general use of geometric integration algorithms within the framework 
of multibody system (MBS) dynamics, an efficient and accurate method of treating of 
kinematical constraints is needed. This issue is a central topic within MBS dynamics, and 
computational procedures based on the 'straightforward' Lie-group ODE integrators can not 
provide a sufficient framework. 

2.2 Lie-group DAE integration procedure  

2.2.1   Procedure framework 
The objective of the paper is to describe an integration method that operates on a Lie-group 

and is suitable for dynamic simulation of constrained MBS. The method is based on Munthe-
Kaas algorithm for ODEs on Lie-groups, which will be extended with the sub-routines for 
treating kinematical constraints i.e. the algorithm is designed to integrate differential-
algebraic (DAE) equations of constrained MBS dynamics. 

The configuration space of MBS is modeled as )3(...)3(... 33 SOSOG ×××××= RR , 
which is a n-dimensional manifold with Lie-group properties, consisting of translational and 
rotational kinematical domains of each rigid body in MBS. The Lie-group composition opera-
tion GGG →×  is introduced by 21 pppcom = , where Gppp com ∈ , , 21  and the identity 
element e of the group is defined as Gpppeep ∈∀==  , . The Lie-algebra GTe=g  
(vector space that is isomorphic to nR ) is defined as the tangent space GTp  at the identity 
p=e. The tangent vector in GTp  (at any point Gp ∈ ) can be represented in Lie-algebra g  via 
derivation pL′  of the left translation map ypyGGLp  ,  : → . Thus, for y=e, we can 

define bijection ΩΩ ~)(~ , :)( ⋅′→′ eLGTeL ppp g  , where Ω~)( ⋅′ eLp  is directional derivative of 

pL  at the point y=e in direction of g∈Ω~  (since G is Lie-group, the element of Lie-algebra Ω~  
defines left invariant vector field on G, similarly as it was the case with SO(3)). 

To incorporate kinematical constraints of MBS, the function mG R→ :Φ are imposed on 
G, meaning that system is constrained to evolve on the n-m dimensional sub-manifold 

{ }0)( : =∈= pGpS Φ . Consequently, dynamic equations of MBS are shaped in the form [4] 

0)() , ,()( =++ λCvQv ptpp TM  

0)( =pΦ  

v~)( ⋅′= eLp p , 

(6) 
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where M is nn× dimensional inertia matrix, nR∈v , [ ]Tkk ωωvvv  ,..., , ,..., 11=  are system 
velocities (k bodies are assumed), Q  represents external and non-linear velocity forces, 

mR∈λ is the vector of Lagrangian multipliers and C  is nm×  dimensional constraint gra-
dient matrix, such that npp R∈∀=⋅′ ΩΩCΩΦ  ,)(~)(  is valid. The equation (6) represents 
DAE system of index 3. Within the framework of the proposed integration procedure, the eq-
uation (6) will be re-shaped into the DAE of index 1 form by including kinematical con-
straints at the acceleration level 0),,( =vvΦ  p  (instead of 0)( =pΦ ) and integrated by the 
routine based on the Munthe-Kaas algorithm. 

To ensure that kinematical constraints are satisfied during integration, constraint violation 
of the system velocities nR∈v  and generalized positions Gp ∈  will be corrected by using 
stabilization algorithm described in [6]. 

2.2.2   Integration algorithm 
The configuration space of MBS at the generalized position level is modeled as Lie-group 

)3(...)3(... 33 SOSOG ×××××= RR  where translation and rotation of each rigid body is in-
cluded in the n-dimensional configuration domain and element of the group is given as 

),...,,,...,( 11 kkp R R x x= . However, for the purpose of the proposed time integration routine 
that operates ‘simultaneously’ at the generalized positions and generalized velocities, a sys-
tem has to be modeled on the 2n-dimensional Lie-group (a system ’state space’) 

)3(...)3(......)3(...)3(... 3333 sosoSOSOTG ××××××××××××= RRRR  with the element 

)~ , ,...~ , ,..., , ,..., , ,...,( 1111 kkkkq ωωvvRRxx= , (7) 

and its Lie-algebra )3(...)3(......)3(...)3(... 3333 sosososoTTG ××××××××××××= RRRR  
with the element given as 

)~, ,...~ , ,...,,~ ,...,~ , ,...,( 1111 kkkkz ωωvvωωvv = . (8) 

By confining ourselves on a single body system to keep formulation short, we introduce oper-
ations in Lie-group TG and its Lie-algebra TTG  as follows. 
Product in TG : ),,,(),,,(),,,( hdgcfbeahgfedcba ++⋅+=⋅          . 

Addition in TTG : ) , , ,(), , , () , , ,( ddccwwvvdcwvdcwv ++++=+ . 

Multiplication by scalar in TTG : ) , , ,() , , ,( dcwvdcwv ααααα = . 

Exponential map in TTG : ) , ),exp( ,() , , ,exp( dcwvdcwv = . 

Here, on the right hand side of definitions, ‘ ⋅ ’ is the multiplication in SO(3), ‘+’ is addition in 
3R and  so(3) and exp is exponential map on so(3). The operations in TG  and TTG of multi-

body system consisting of system of k bodies is defined component-wise equivalently as for a 
single body system. 

With all Lie-group operation in place, the differential equation describing dynamics of 
MBS on Lie group TG  can be written in the form 

qqFq )(= , (9) 
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where TGq ∈  and TTGTGF →  :  is given by zqF →  : , where elements q and z are given 

by (7) and (8). During evaluation of zqF →  : , the variables [ ]Tkk ωωvvv  ~, ,...~ , ,..., 11=  are 
determined by the system dynamics equation 









=
















ξ
Q

λ
v

0C
C TM

, (10) 

which has to be solved (linear algebraic system for variables  v and λ ) within integration al-
gorithm of the differential equation (9). 

The equation (10) represents first two equations of system (6), shaped as DAE of index 1, 
where the acceleration kinematical constraints 0),,( =vvΦ  p  are introduced as ξvC = [5]. 

The differential equation (9) of the system dynamics on TG  has the same form as differen-
tial equation (3) and can be solved by using Munthe-Kaas (MK) type of integration algorithm 
[7]. Similarly as it was the case with (3), (9) can be solved by introducing local integration 
coordinate u in  TTG that satisfy 

))((exp 1 qFdu u
−= , 0)0( =u . (11) 

Within MK method, (9) is integrated in TTG  and numerical solution is than pulled-back on 
TG  via exponential mapping. The algorithm itself can be given in the form [8] 

si
qq w

, . . . ,2 ,1 for
10

=
= −  

     
),,dexpinv(~
)),exp(,(
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),exp( 0qvqw  =  

where the coefficients are given by the nth order Runge-Kutta method's Butcher table [2, 12] 
and function dexpinv is defined as follows  [2, 8] 

[ ] [[[ ] ] ][             kuuu
p

B
kuknku

p
n

p

p ,,...,,
!

,
2
1 ),,dexpinv(

1

2



∑
−

=

+−= .  

The variables iii kku
~

,,  are MK method internal integration variables [7, 8] (similar as those 
that are defined within the framework of RK algorithms - MK methods reduce to RK algo-
rithms when operate in vector space), which have the same format as z given by (8), see     
also (11). 

A numerical solution obtained by the described algorithm will satisfy constraint equation at 
the acceleration level 0),,( =vvΦ  p  automatically, since this equation is directly incorporated 
in the function evaluation TTGTGF →  :  via formulation (10). However, the constraint eq-
uations for the generalized positions 0)( =pΦ  and velocities 0),( =vΦ p  (which can be also 
written in the form ξvC =)( p [5]) that are also part of DAE formulation (6), will be unavoid-
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ably violated during the straightforward integration based on the MK type of algorithm. To 
solve this problem, the constraint violation stabilization procedure at the position and velocity 
level has to be incorporated into the integration procedure by expanding the algorithm de-
scribed above. 

For this purpose we propose the projective stabilization method, that is based on nonlinear 
constrained least square problem given in the form 

( )

2

ˆ
ˆ

min
w

v, vv 







−
−

kk

kk

p

pp
kk

, 0)( =pΦ , I=T
iiRR , 0),( =vΦ p , (12) 

(where 
w

denotes the weighted norm). The projected variables have to satisfy constraint eq-

uations 0)( =pΦ , I=T
iiRR  and  0),( =vΦ p  to obtain stabilized values kk ,p v , as ex-

pressed in (12), while kkp v̂,ˆ  are ‘unstabilized’ values that are obtained from the integrator for 

the current integration step.  Here, it should be emphasized that equations I=T
iiRR  are 

included in the projection algorithm to make sure that stabilization procedure does not 
undermine orthogonality of iR  that will be imanently preserved by the MK type of 
integration algorithm (numerical integration on Lie-group TG  that include and preserve SO(3) 
manifold of each rigid body rotation domain). Actually, after each integration step on Lie 
group TG , we adjust integration values to be in compliance with kinematical constraints 

0)( =pΦ  and 0),( =vΦ p , by preserving orthogonality of iR  during the process (we treat 

iR  as it is valid )3(GLi ∈R  and impose orthogonality equations I=T
iiRR  as external 

conditions during stabilization given by (12)). 
Technically, the numerical solution of the projection step can be computed iteratively by 

using Gauss-Newton algorithm, which is essentially based on generalized inverses (or pseu-
do-inverse) of the system constraint matrix and represents well-known common procedure in 
domain of numerical solving of algebraic systems [6, 9]. The alternative method of stabilizing 
constraint violation that might be specially convenient to be used in Lie group setting is dis-
cussed in [5,10]. It is reported in [5] that both methods provide excellent and very comparable 
stabilization results. 

2.3 Numerical example: heavy top 
As a numerical illustration, the example of heavy top (that became as a sort of a bench-

mark problem for this kind of analysis) is included. Since heavy top is formulated as a con-
strained mechanical system that leads to DAE formulation (DAE of index 1 in this case), the 
equations that govern system dynamics and kinematics are presented as follows. 

Translational and rotational part of system dynamical equations are given in the standard 
form 

gλCv mm T =− ,  (13) 

0
~~ =++ λRXJωωωJ T , (14) 

where x  is the body mass centre position, ω  represents body angular velocity, m and J are 
body mass and tensor of inertia, λ  stands for joint reaction forces, C is constraint matrix, g is 
gravity, X is body mass centre in the local coordinate system fixed to the body and )3(SO∈R  
is rotation matrix that relates body coordinate system to inertial coordinate system. 
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Mechanical system constraints at position, velocity and acceleration level that represent 
body joint are given as 

0=+− RXx , (15) 

[ ] 0
~

3 =







−−

ω
v

 XRI , (16) 

[ ] XωωR
ω
v

 XRI ~~~
3 −=








−−




, (17) 

and system constraint matrix can be shaped in the form 

[ ]  XRIC
~

3 −−= , (18) 

or 


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 −
=


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



−

−
= TTT

T

RX
I

RX
I

 C ~~ 33 , (19) 

which allows for assembling equations of system dynamics in DAE of index 1 form 


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
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−=
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
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


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
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




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





−−

−

XωωR
Jωω
g

λ
ω
v

0XRI
RXJ0
I0I

~~
~

~
~

3

33 mm
T 



. (20) 

The equation (20) has the same formal shape as (10) (as well as (A1) in [5], which has been 
formulated in vector space via generalized (local) coordinates). The numerical solution of (20) 
must satisfy (15), (16) and (17).  The results of numerical integration are given by the       
Figures 1 - 4. 

           

Figure 1: Spatial trajectory of body mass centre.   Figure 2: Sequence of the motion animation (post-
processed via ADAMS). 
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Figure 3: Position of body mass centre. Figure 4: Body angular velocities. 

               

3 CONCLUSION 
The Lie-group integration method for constrained multibody systems is proposed in the 

paper. The method operates on Lie-group of system configuration that is modeled as ‘state 
space formulation’. The system constraints are introduced in the mathematical model via 
DAE of index 1 fomulation and constraint violation is minimized by using constraint mani-
fold projection method based on solving the nonlinear constrained least square problem. Since 
integration algorithm operates directly with angular velocities and rotational matrices, mean-
ing that no local (generalized) coordinates are introduced, the method circumvent problems of 
kinematic singularities of rigid body three-parameters rotation basis, re-parameterization of 
system kinematics during integration as well as numerical non-efficiency of the kinematic dif-
ferential equations. The method is numerically robust and it is easy-applicable on the general 
class of multibody systems. 
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