
Dynamic Simulation of Helicopter 3D Airborne Maneuvers with
Numerical Integration Scheme in Lie-Group Setting

Zdravko Terze1, Milan Vrdoljak1, Dario Zlatar1

1 Dept. of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb,
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Abstract

Dynamic simulation procedures of the aircraft 3D motion need robust and efficient integration methods in order to allow
for reliable (and possibly real-time) simulation missions. Derivation of such integration schemes in coordinate-free Lie-
group settings is especially efficient since Lie-group dynamical models operate directly on SO(3) rotational matrices and
angular velocities, avoiding local rotation parameters and artificial algebraic constraints as well as kinematical differential
equations. These integration features of the coordinate-free formulations should be especially beneficial for the flight
vehicle simulation missions since a realization of the aircraft complex 3D maneuvers often requires numerical forward
dynamics that includes complete 3D rotation domain. In such cases, the utilization of the ‘standard’ vector-space-based
modeling procedures (with the local rotation parameters) leads toward kinematical singularities and re-parameterization
of the rotation domain, which requires further computational burden. Along this line, a numerical integration scheme
in Lie-group settings for the helicopter forward dynamics as well as inverse dynamics control problem is presented and
discussed in the paper.

In the adopted modeling approach, the configuration space of the helicopter 6 DOF model is introduced as a six-
dimensional Lie-group G = R3 × SO(3) with the element of the form p = (x,R) that consists of the helicopter body
mass center position vector x and the body attitude, given by the rotation matrix R w.r.t. the global frame.

The body angular velocity is given by the left-invariant vector field ω̃ ∈ so(3) defined as Ṙ(t) = R(t)ω̃ with so(3)
being the Lie algebra of SO(3). A velocity of the helicopter can thus be represented by the couple (v,ω) ∈R3 × so(3),
where v is the body mass center velocity.

Aiming on the application of the Lie-group integration scheme proposed in [1], also the vehicle state space must be
expressed as a Lie-group. Therefore, the helicopter state space S = R3×SO(3)×R3× so(3)=̃TG is introduced, with
the element q = (x,R,v,ω). This is a Lie-group itself and possess the Lie-algebra S = R3×so(3)×R3×R3 with the
element z = (v, ω̃, v̇, ω̇). Furthermore, we introduce the operations on the Lie-group S and its Lie-algebra S as follows:
Product in R3 × SO(3) : (a, b, c, d) · (e, f, g, h) = (a+ e, b · f, c+ g, d+ h).
Addition in R3 × so(3) : (v, w, c, d) + (v̄, w̄, c̄, d̄) = (v + v̄, w + w̄, c+ c̄, d+ d̄).
Multiplication by scalar in R3 × so(3) : α(v, w, c, d) = (αv, αw, αc, αd).
Exponential map in R3 × so(3) : exp(v, w, c, d) = (v, exp(w), c, d).
Bracket in R3 × so(3) :

[
(v, w, c, d), (v̄, w̄, c̄, d̄)

]
= (0, w × w̄, 0, 0).

Here, on the right hand side of definitions, ‘·’ is the multiplication in SO(3), ‘+’ is the addition in R3 and so(3) and
exp is the exponential map on so(3).

The dynamical model of the airborne helicopter, modeled as an under-actuated mechanical system in the introduced
Lie-group state space, can be formulated as

M(p)v̇ = Q(p,v, t) + BT (p)u

ṗ = p · ṽ,
(1)

where M is 6×6 dimensional generalized inertia matrix, v ∈R6, v = [v,ω]T are the system velocities, Q stands for the
external and non-linear velocity forces and BT u represents helicopter actuation (4×6 matrix B standing for the influence
of the pilot control inputs u on the generalized actuation forces). For the specified control inputs, forward dynamics of the
helicopter airborne movement can be obtained via Lie-group integration scheme proposed in [1] and furtherly commented
in [2]. During integration, the helicopter 3D motion can be numerically reconstructed from the vehicle velocity field v,
by using the equation ṗ = p · ṽ in (1).
Beside forward dynamics problem in Lie-group setting as explained above, the paper will also address inverse dynamics
control problem [3] of the helicopter airborne motion. With this aim in view, aircraft 3D trajectories will be specified by



imposing system algebraic (control) constraints in the form

Φ(p)− ψ(t) = 0, (2)

that can be also given on the acceleration constraint level

C(p)v̇ − ϑ(p,v, t) = 0. (3)

In (2) and (3) C is 4×6 dimensional constraint matrix, such that Φ′(p) · ṽ = C(p)v, where Φ′ is the differential mapping
of the constraint mapping Φ : G→R4, and ψ(t) is the additional rheonomic term. By putting together (1) and (2) or (3),
the helicopter inverse dynamics control problem can be formulated as DAE integration problem [4] in Lie-group settings.
Assuming flatness of the under-actuated system [5], the helicopter state space variables q = (x,R,v,ω) as well as
control inputs u can be determined by the integration algorithm based on the geometric concepts [6], [7], [1], [2]. During
integration, DAE hidden constraints may be stabilized via Lie-group stabilization algorithms described in [1] and [2].

In the paper, the outlined computational procedure will be presented in detail. The numerical algorithm will be
demonstrated and tested within the framework of the several case-studies with the specified helicopter 3D maneuvers.

Acknowledgments

The authors acknowledge the support of the Croatian Science Foundation under the contract of the project ‘Geometric
Numerical Integrators on Manifolds for Dynamic Analysis and Simulation of Structural Systems’ that is conducted at
Chair of Flight Vehicle Dynamics, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb.

References

[1] Z. Terze, A. Müller, D. Zlatar. Lie-group integration method for constrained multibody systems in stabilized DAE-
index-1 form. Multibody System Dynamics, 2012 (submitted).

[2] A. Müller, Z. Terze. Two variants of a Lie-group integration scheme for dynamics simulation of constrained multi-
body systems. Int. J. Numer. Meth. Engng., 2012 (submitted).

[3] M. Azam and S. N. Singh. Invertibility and trajectory control for nonlinear maneuvers of aircraft. Journal of Guid-
ance, Control and Dynamics, 17:192-200, 1994.

[4] W. Blajer, K. Kolodziejczyk. A geometric approach to solving problems of control constraints: theory and a DAE
framework. Multibody System Dynamics, 11:343-364, 2004.

[5] M. Fliess, J. L. Lévine, P. Martin and P. Rouchon. Flatness and defect of non-linear systems: introductory theory
and examples. International Journal of Control, 61:1327-1361, 1995.

[6] Iserles, Munthe-Kaas, Norsett and Zanna. Lie-group methods. Acta Numerica, 9:215-365, 2000.

[7] O. Brüls and A. Cardona. On the use of Lie group time integrators in multibody dynamics. ASME Journal of Com-
putational and Nonlinear Dynamics, 5:1-23, 2010.


